Advertisement

Developing Self-Organizing Robotic Cells Using Organic Computing Principles

  • Alwin Hoffmann
  • Florian Nafz
  • Andreas Schierl
  • Hella Seebach
  • Wolfgang Reif
Part of the Studies in Computational Intelligence book series (SCI, volume 355)

Abstract

Nowadays industrial robotics applications, which are often designed and planned with a huge amount of effort, have a fixed behavior during runtime and cannot react to changes in their environment. Failures can hardly be compensated and often can only be repaired by human involvement. The idea of Organic Computing is to enable systems to possess life-like properties, such as self-organizing or self-healing. In this chapter we present a layered architecture to bring these two worlds together. Further it is discussed what are the requirements of the respective layers to allow to engineer self-x properties into such systems. The presented approach allows for developing self-organizing robotic applications that are able to take advantage of Organic Computing principles and therefore are more robust and flexible during runtime.

Keywords

IEEE Computer Society Industrial Robot Control Layer Autonomic Computing Robot Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angerer, A., Hoffmann, A., Schierl, A., Vistein, M., Reif, W.: The Robotics API: An object-oriented framework for modeling industrial robotics applications. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipeh, Taiwan. IEEE Computer Society Press, Los Alamitos (2010)Google Scholar
  2. 2.
    Black, J.T., Musunur, L.P.: Robotic manufacturing cells. In: Nof, S. (ed.) Handbook of Industrial Robotics, ch.35, pp. 697–716. John Wiley & Sons, Hoboken (1999)Google Scholar
  3. 3.
    Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner, F., Schmeck, H.: Organic Computing – Addressing complexity by controlled self-organization. In: Proceedings of the 2nd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2006), Paphos, Cyprus, pp. 185–191. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  4. 4.
    De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., Claes, K., Bruyninckx, H.: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. Int. J. Rob. Res. 26(5), 433–455 (2007), doi:http://dx.doi.org/10.1177/027836490707809107 CrossRefGoogle Scholar
  5. 5.
    Finkemeyer, B., Kröger, T., Wahl, F.M.: Executing assembly tasks specified by manipulation primitive nets. Advanced Robotics 19(5), 591–611 (2005)CrossRefGoogle Scholar
  6. 6.
    Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems Journal 42(1), 5–18 (2003)CrossRefGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley Professional, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and construction paradigm for organic computing systems. In: Proceedings of the Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008), Venice, Italy, pp. 233–242. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  9. 9.
    Güdemann, M., Ortmeier, F., Reif, W.: Safety and dependability analysis of self-adaptive systems. In: Proceedings of ISoLA 2006. IEEE CS Press, Los Alamitos (2006)Google Scholar
  10. 10.
    Hägele, M., Nilsson, K., Pires, J.N.: Industrial robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, ch.42, pp. 963–986. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Hägele, M., Skordas, T., Sagert, S., Bischoff, R., Brogårdh, T., Dresselhaus, M.: Industrial robot automation. White paper, European Robotics Network (2005)Google Scholar
  12. 12.
    Hoffmann, A., Angerer, A., Ortmeier, F., Vistein, M., Reif, W.: Hiding real-time: A new approach for the software development of industrial robots. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp. 2108–2113. IEEE Computer Society Press, St. Louis (2009)Google Scholar
  13. 13.
    Hoffmann, A., Angerer, A., Schierl, A., Vistein, M., Reif, W.: Towards object-oriented software development for industrial robots. In: Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2010). INSTICC Press, Funchal (2010)Google Scholar
  14. 14.
    Hoffmann, A., Nafz, F., Ortmeier, F., Schierl, A., Reif, W.: Prototyping plant control software with microsoft robotics studio. In: Proceedings of the Third International Workshop on “Software Development and Integration in Robotics” (SDIR-III). IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  15. 15.
    Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mason, M.: Compliance and force control for computer-controlled manipulators. IEEE Transactions on Systems, Man, and Cybernetics 11(6), 418–432 (1981)CrossRefGoogle Scholar
  17. 17.
    Mehrabi, M., Ulsoy, A., Koren, Y., Heytler, P.: Trends and perspectives in flexible and reconfigurable manufacturing systems. Journal of Intelligent Manufacturing 13(2), 135–146 (2002)CrossRefGoogle Scholar
  18. 18.
    Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence. In: Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Stockholm, Sweden, pp. 2–5. ACM, New York (2004)CrossRefGoogle Scholar
  19. 19.
    Müller-Schloer, C., Sick, B.: Controlled emergence and self-organization. In: Würtz (ed.) [39], pp. 81–104.Google Scholar
  20. 20.
    Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Organic computing. Informatik Spektrum 27(4), 332–336 (2004)CrossRefGoogle Scholar
  21. 21.
    Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.P., Reif, W.: A generic software framework for role-based organic computing systems. In: Proc. Intl. Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp. 96–105 (2009)Google Scholar
  22. 22.
    Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.-P., Reif, W.: A universal self-organization mechanism for role-based organic computing systems. In: González Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp. 17–31. Springer, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-02704-8-3 CrossRefGoogle Scholar
  23. 23.
    Nafz, F., Seebach, H., Steghöfer, J.P., Bäumler, S., Reif, W.: A Formal Framework for Compositional Verification of Organic Computing Systems. In: Proceedings of the seventh International Conference on Autonomic and Trusted Computing, ATC-2010 (2010)Google Scholar
  24. 24.
    Okamura, A., Smaby, N., Cutkosky, M.: An overview of dexterous manipulation. In: Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000), pp. 255–262. IEEE Computer Society Press, San Francisco (2000)CrossRefGoogle Scholar
  25. 25.
    OMG. Object Constraint Language, OMG Available Specification (2006)Google Scholar
  26. 26.
    Pires, J.N.: New challenges for industrial robotic cell programming. Industrial Robot 36(1) (2009)Google Scholar
  27. 27.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In: Bordini, R., Dastani, M., Dix, G., Seghrouchni, A.E.F. (eds.) Multi-Agent Programming, pp. 149–174. Springer, Heidelberg (2005); Book chapter CrossRefGoogle Scholar
  28. 28.
    Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic observer/controller architecture for organic computing. In: GI Jahrestagung, vol. (1), pp. 112–119 (2006)Google Scholar
  29. 29.
    Schild, K., Bussmann, S.: Self-organization in manufacturing operations. Commun. ACM 50(12), 74–79 (2007), http://doi.acm.org/10.1145/1323688.1323698 CrossRefGoogle Scholar
  30. 30.
    Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: A software engineering guideline for self-organizing resource-flow systems. In: Proceedings of the Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2010), Budapest, Hungary. IEEE Computer Society Press, Los Alamitos (2010)Google Scholar
  31. 31.
    Seebach, H., Ortmeier, F., Reif, W.: Design and construction of organic computing systems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 4215–4221. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  32. 32.
    Smits, R., De Laet, T., Claes, K., Bruyninckx, H., De Schutter, J.: iTASC: A tool for multi-sensor integration in robot manipulation. In: Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), Seoul, Korea, pp. 426–433. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  33. 33.
    Sudeikat, J., Steghöfer, J.P., Seebach, H., Renz, W., Preisler, T., Salchow, P., Reif, W.: Design and simulation of a wave-like self-organization strategy for resource-flow systems. In: 4th International Workshop on Multi-Agent Systems and Simulation (MAS&S) (2010) (accepted)Google Scholar
  34. 34.
    Thomas, U., Finkemeyer, B., Kröger, T., Wahl, F.M.: Error-tolerant execution of complex robot tasks based on skill primitives. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA 2003), Taipei, Taiwan, pp. 3069–3075. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  35. 35.
    Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-71209-1_49 CrossRefGoogle Scholar
  36. 36.
    Tsang, E.: Foundations of constraint satisfaction (1993)Google Scholar
  37. 37.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. U.S. Nuclear Regulatory Commission, Washington, DC (1981)Google Scholar
  38. 38.
    Vistein, M., Angerer, A., Hoffmann, A., Schierl, A., Reif, W.: Interfacing industrial robots using realtime primitives. In: Proceedings of the 2010 International Conference on Automation and Logistics (ICAL 2010), Hong Kong, China. IEEE Computer Society Press, Los Alamitos (2010)Google Scholar
  39. 39.
    Würtz, R.P. (ed.): Organic Computing (Understanding Complex Systems). Springer, Heidelberg (2008)Google Scholar
  40. 40.
    Zaeh, M., Ostgathe, M.: A multi-agent-supported, product-based production control. In: Proceedings of the 7th IEEE International Conference on Control and Automation, Christchurch, New Zealand, pp. 2376–2383. IEEE Computer Society Press, Los Alamitos (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alwin Hoffmann
    • 1
  • Florian Nafz
    • 1
  • Andreas Schierl
    • 1
  • Hella Seebach
    • 1
  • Wolfgang Reif
    • 1
  1. 1.Institute for Software & Systems EngineeringUniversity of AugsburgAugsburgGermany

Personalised recommendations