Advertisement

Towards Physarum Robots

  • Jeff Jones
  • Soichiro Tsuda
  • Andrew Adamatzky
Part of the Studies in Computational Intelligence book series (SCI, volume 355)

Abstract

The true slime mould Physarum polycephalum is a suitable candidate organism for small scale robotics because it spontaneously generates transport, movement and navigation, exhibiting complex behaviour from very simple component interactions. Physarum may be considered as a smart computing material as its motor and control systems are distributed within a simple tissue type and can survive trauma such as excision, fission and fusion of plasmodia. We demonstrate experimentally how the plasmodium of Physarum may be configured to generate complex and controllable oscillatory transport behaviour which may prove useful in small robotic devices. We measure the lifting force of the plasmodium and demonstrate how protoplasmic transport can be influenced by externally applied illumination stimuli. We provide an exemplar vehicle mechanism by coupling the oscillations of the plasmodium to drive the wheels of a Braitenberg vehicle and use light stimuli to effect a steering mechanism. To explore the generation of complex behaviour from such simple component parts we present a particle based model of Physarum which spontaneously generates complex oscillatory patterns from simple local interactions, is distributed in terms of the origin and control of motor behaviour, is morphologically adaptive, is amenable to external influence, and is robust to environmental insult and thus can itself be considered as a virtual smart material. We demonstrate different forms of controllable motion, including linear, reciprocal, rotational, helical, and amoeboid movement.We enable external control of the robotic movement by simulated chemo-attraction (‘pulling’) and simulated light hazards (‘pushing’). The amorphous and distributed properties of the collective are demonstrated by cleaving it into two independent entities and fusing two separate entities to form a single device, thus enabling it to traverse difficult or separate paths. We conclude by examining ways in which future robotic devices may be developed using physical instances of smart materials.

Keywords

Oscillatory Behaviour Slime Mold Oscillation Pattern Water Height Particle Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fearing, R.S.: Survey of sticking effects for micro parts handling. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems 1995 Human Robot Interaction and Cooperative Robots, vol. 2, pp. 212–217. IEEE, Los Alamitos (2002)CrossRefGoogle Scholar
  2. 2.
    Ai, B.Q., Xie, H.Z., Wen, D.H., Liu, X.M., Liu, L.G.: Heat flow and efficiency in a microscopic engine. The European Physical Journal B 48(1), 101–106 (2005)CrossRefGoogle Scholar
  3. 3.
    Sher, I., Levinzon-Sher, D., Sher, E.: Miniaturization limitations of HCCI internal combustion engines. Applied Thermal Engineering 29(2-3), 400–411 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., Nelson, B.J.: Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters 94(6), 064107 (2009)CrossRefGoogle Scholar
  5. 5.
    Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437(7060), 862–865 (2005)CrossRefGoogle Scholar
  6. 6.
    den Toonder, J., Bos, F., Broer, D., Filippini, L., Gillies, M., de Goede, J., Mol, T., Reijme, M., Talen, W., Wilderbeek, H., et al.: Artificial cilia for active micro-fluidic mixing. Lab Chip 8(4), 533–541 (2008)CrossRefGoogle Scholar
  7. 7.
    Suh, J.W., Darling, R.B., Bohringer, K.F., Donald, B.R., Baltes, H., Kovacs, G.T.: Fully programmable MEMS ciliary actuator arrays for micromanipulation tasks. In: Proceedings IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 1101–1108. IEEE, Los Alamitos (2002)CrossRefGoogle Scholar
  8. 8.
    Trimmer, B.A., Takesian, A.E., Sweet, B.M., Rogers, C.B., Hake, D.C., Rogers, D.J.: Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots. In: 7th International Symposium on Technology and the Mine Problem. Citeseer (2006)Google Scholar
  9. 9.
    Saga, N., Nakamura, T.: Development of a peristaltic crawling robot using magnetic fluid on the basis of the locomotion mechanism of the earthworm. Smart Materials and Structures 13, 566 (2004)CrossRefGoogle Scholar
  10. 10.
    Umedachi, T., Kitamura, T., Takeda, K., Nakagaki, T., Kobayashi, R., Ishiguro, A.: A Modular Robot Driven by Protoplasmic Streaming. Distributed Autonomous Robotic Systems 8, 193–202 (2009)CrossRefGoogle Scholar
  11. 11.
    Kubea, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and autonomous systems 30, 85–101 (2000)CrossRefGoogle Scholar
  12. 12.
    Zhang, S.: Fabrication of novel biomaterials through molecular self-assembly. Nature biotechnology 21(10), 1171–1178 (2003)CrossRefGoogle Scholar
  13. 13.
    Lobovkina, T., Dommersnes, P.G., Tiourine, S., Joanny, J.F., Orwar, O.: Shape optimization in lipid nanotube networks. The European Physical Journal E: Soft Matter and Biological Physics 26(3), 295–300 (2008)CrossRefGoogle Scholar
  14. 14.
    Lobovkina, T., Gozen, I., Erkan, Y., Olofsson, J., Weber, S.G., Orwar, O.: Protrusive growth and periodic contractile motion in surface-adhered vesicles induced by ca2+-gradients. Soft Matter 6(2), 268–272 (2010)CrossRefGoogle Scholar
  15. 15.
    Lagzi, I., Soh, S., Wesson, P.J., Browne, K.P., Grzybowski, B.A.: Maze solving by chemotactic droplets. Journal of the American Chemical Society (2010), doi:10.1021/ja9076793Google Scholar
  16. 16.
    Dillon, R.H., Fauci, L.J., Omoto, C., Yang, X.: Fluid dynamic models of flagellar and ciliary beating. Annals of the New York Academy of Sciences (Reproductive Biomechanics) 1101, 494–505 (2007)CrossRefGoogle Scholar
  17. 17.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21(4), 642–653 (2008)CrossRefGoogle Scholar
  18. 18.
    Adamatzky, A., Arena, P., Basile, A., Carmona-Galan, R., de Lacy Costello, B., Fortuna, L., Frasca, M., Rodriguez-Vazquez, A.: Reaction-diffusion navigation robot control: from chemical to vlsi analogic processors. IEEE Transactions on Circuits and Systems I: Regular Papers [see also IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications] 51(5), 926–938 (2004)Google Scholar
  19. 19.
    Adamatzky, A., de Lacy Costello, B., Skachek, S., Melhuish, C.: Manipulating objects with chemical waves: Open loop case of experimental belousov-zhabotinsky medium coupled with simulated actuator array. Physics Letters A 350(3-4), 201–209 (2006)CrossRefGoogle Scholar
  20. 20.
    Maeda, S., Hara, Y., Sakai, T., Yoshida, R., Hashimoto, S.: Self-Walking Gel. Advanced Materials 19(21), 3480–3484 (2007)CrossRefGoogle Scholar
  21. 21.
    Adamatzky, A., De Lacy Costello, B., Shirakawa, T.: Universal computation with limited resources: Belousov-zhabotinsky and physarum computers. International Journal of Bifurcation and Chaos (2008) (in press)Google Scholar
  22. 22.
    Nakagaki, T. (ed.): Int. Journal of Unconventional Comput. Special Issue: The Birth of Physarum Computing. Old City Publishing (2010)Google Scholar
  23. 23.
    Adamatzky, A.: Developing proximity graphs by physarum polycephalum: Does the plasmodium follow toussaint hierarchy? Parallel Process. Lett. 19, 105–127 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Shirakawa, T., Gunji, Y.P.: Computation of Voronoi diagram and collision-free path using the Plasmodium of Physarum polycephalum. Int. J. Unconventional Computing 6(2), 79–88 (2010)Google Scholar
  25. 25.
    Shirakawa, T., Adamatzky, A., Gunji, Y.P., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. International Journal of Bifurcation and Chaos 19(9), 3109–3117 (2009)CrossRefGoogle Scholar
  26. 26.
    Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: A biologically inspired method of road-network navigation. Physica A: Statistical Mechanics and its Applications 363(1), 115–119 (2006)CrossRefGoogle Scholar
  27. 27.
    Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Adamatzky, A., Jones, J.: Road planning with slime mould: If physarum built motorways it would route m6/m74 through newcastle. International Journal of Bifurcation and Chaos (2010) (in press)Google Scholar
  29. 29.
    Adamatzky, A.: Physarum machine: Implementation of a kolmogorov-uspensky machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Adamatzky, A., Jones, J.: Towards Physarum robots: computing and manipulating on water surface. Journal of Bionic Engineering 5(4), 348–357 (2008)CrossRefGoogle Scholar
  31. 31.
    Tsuda, S., Zauner, K.-P., Gunji, Y.-P.: Robot control with biological cells. In: Proceedings of the Sixth Int. Workshop on Information Processing in Cells and Tissues, St. William’s College, York, August 30–September 1, pp. 202–216 (2005)Google Scholar
  32. 32.
    Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophysical Chemistry 84(3), 195–204 (2000)CrossRefGoogle Scholar
  33. 33.
    Allen, P.J., Price, W.H.: The relation between respiration and protoplasmic flow in the slime mold, Physarum polycephalum. American Journal of Botany 37(5), 393–402 (1950)CrossRefGoogle Scholar
  34. 34.
    Kamiya, N.: The protoplasmic flow in the myxomycete plasmodium as revealed by a volumetric analysis. Protoplasma 39(3), 344–357 (1950)CrossRefGoogle Scholar
  35. 35.
    Gotoh, K., Kuroda, K.: Motive force of cytoplasmic streaming during plasmodial mitosis of physarum polycephalum. Cell Motility and the Cytoskeleton 2(2), 173–181 (1982)CrossRefGoogle Scholar
  36. 36.
    Smith, D.A., Saldana, R.: Model of the Ca2+ oscillator for shuttle streaming in Physarum polycephalum. Biophysical journal 61(2), 368–380 (1992)CrossRefGoogle Scholar
  37. 37.
    Kamiya, N., Kuroda, K.: Studies on the velocity distribution of the protoplasmic streaming in the myxomycete plasmodium. Protoplasma 49(1), 1–4 (1958)CrossRefGoogle Scholar
  38. 38.
    Tsuda, S., Jones, J.: The emergence of synchronization in physarum polycephalum and its particle approximation. Biosystems (2010) (in press)Google Scholar
  39. 39.
    Takamatsu, A., Fujii, T.: Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure. Sensors Update 10(1), 33–46 (2002)CrossRefGoogle Scholar
  40. 40.
    Takamatsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)CrossRefGoogle Scholar
  41. 41.
    Häder, D.-P., Schreckenbach, T.: Phototactic Orientation in Plasmodia of the Acellular Slime Mold, Physarum polycephalum. Cell 25(1), 55–61 (1984)Google Scholar
  42. 42.
    Wolf, R., Niemuth, J., Sauer, H.: Thermotaxis and protoplasmic oscillations in Physarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma 197(1-2), 121–131 (1997)CrossRefGoogle Scholar
  43. 43.
    Anderson, J.D.: Galvanotaxis of slime mold. J. Gen. Physiol. 35(5), 1–1 (1951)CrossRefGoogle Scholar
  44. 44.
    Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophysical Chemistry 82, 23–28 (1999)CrossRefGoogle Scholar
  45. 45.
    Nakagaki, T., Uemura, S., Kakiuchi, Y., Ueda, T.: Action spectrum for sporulation and photoavoidance in the plasmodium of Physarum polycephalum, as modified differentially by temperature and starvation. Photochem. Photobiol. 64(5), 859–862 (1996)CrossRefGoogle Scholar
  46. 46.
    Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)Google Scholar
  47. 47.
    Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International Journal of Unconventional Computing 6(2), 125–144 (2010)Google Scholar
  48. 48.
    Jones, J.: Characteristics of pattern formation and evolution in approximations of physarum transport networks. Artificial Life 16(2), 127–153 (2010)CrossRefGoogle Scholar
  49. 49.
    Tsuda, S., Jones, J.: The emergence of complex oscillatory behaviour in physarum polycephalum and its particle approximation. In: Artificial Life XII, pp. 698–705 (2010)Google Scholar
  50. 50.
    Flynn, M.R., Kasimov, A.R., Nave, J.C., Rosales, R.R., Seibold, B.: Self-sustained nonlinear waves in traffic flow. Physical Review E 79(5), 56113 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Durham, A.C.H., Ridgway, E.B.: Control of chemotaxis in Physarum polycephalum. The Journal of Cell Biology 69, 218–223 (1976)CrossRefGoogle Scholar
  52. 52.
    Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. R. Soc. Proc.: Biol. Sci. 271(1554), 2305–2310 (2004)CrossRefGoogle Scholar
  53. 53.
    Adamatzky, A.: Physarum Machines. World Scientific, Singapore (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jeff Jones
    • 1
  • Soichiro Tsuda
    • 1
  • Andrew Adamatzky
    • 1
  1. 1.Unconventional Computing GroupUniversity of the West of EnglandBristolUK

Personalised recommendations