Morphogenetic Robotics - An Evolutionary Developmental Approach to Morphological and Neural Self-Organization of Robotic Systems

  • Yaochu Jin
  • Yan Meng
Part of the Studies in Computational Intelligence book series (SCI, volume 355)


Morphogenesis can be considered as a self-organizing process shaped by natural evolution, in which two major adaptation mechanisms found in nature are involved, namely evolution and development. The main philosophy of morphogenetic robotics is to apply evolutionary developmental principles to robotics for designing self-organizing, self-reconfigurable, and self-repairable single- or multirobot systems. We categorize these methodologies into three areas, namely, morphogenetic swarm robotic systems, morphogenetic modular robots, and co-development of body and brain of robotic systems. In this chapter, we give a brief introduction to morphogenetic robotics. A few examples are also presented to illustrate how evolutionary developmental principles can be applied to swarm robots in changing environment. We also describe computational models for genetically driven neural and morphological development and activity-dependent neural development. As developmental mechanisms are often shaped by evolution both in nature and simulated systems, we suggest that evolutionary developmental robotics is a natural next step to follow.


Target Shape NURBS Curve Target Pattern Covariance Matrix Adaptation Evolution Strategy Modular Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashe, H.L., Briscoe, J.: The interpretation of morphogen gradients. Development 133, 385–394 (2007)CrossRefGoogle Scholar
  2. 2.
    Beloussov, L.V.: Integrating self-organization theory into an advanced course on morphogenesis at Moscow State University. Int. J. Dev. Biol. 47, 177–181 (2003)Google Scholar
  3. 3.
    Ben-Amor, H., Cadau, S., Elena, A., Dhouailly, D., Demongeot, J.: Regulatory networks analysis: Robustness in morphogenesis. In: 2009 Int. Conf. on Advanced Information Networking and Application Workshops, Bradford, UK, pp. 924–928 (2009)Google Scholar
  4. 4.
    Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience 2(1), 32–48 (1982)Google Scholar
  5. 5.
    Bishop, C.D., Erezyilmaz, D.F., Flatt, T., Georgiou, C.D., Hadfield, M.G., Heyland, A., Hodin, J., Jacobs, M.W., Maslakova, S.A., Pires, A., Reitzel, A.M., Santagata, S., Tanaka, K., Youson, J.H.: What is metamophosis? Integrative and Comparative Biology 46, 655–661 (2006)CrossRefGoogle Scholar
  6. 6.
    Cohen, D.J., Cicchetti, D.: Developmental Neuroscience. Wiley, Chichester (2006)Google Scholar
  7. 7.
    Flavell, S., Greenberg, M.E.: Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annual Review of Neuroscience 31, 563–590 (2008)CrossRefGoogle Scholar
  8. 8.
    Floreano, D., Nolfi, S., Mondana, F.: Competitive co-evolutionary robotics: from theory to practice. From Animal to Animats 5, 515–525 (1998)Google Scholar
  9. 9.
    Gilbert, S.F.: Developmental Biology. Sinauer Associates (2003)Google Scholar
  10. 10.
    Gilbert, S.F.: The morphogenesis of evolutionary developmental biology. Int. Journal of Developmental Biology 47, 467–477 (2003)Google Scholar
  11. 11.
    Griffiths, P.E.: Evo-devo meets the mind: Towards a developmental evolutionary psychology. In: Sanson, R., Brandon, R.N. (eds.) Integrating Development and Evolution. Cambridge University Press, Cambridge (2007)Google Scholar
  12. 12.
    Guo, H., Jin, Y., Meng, Y.: A framework for self-organized multi-robot pattern formation and boundary coverage inspired from morphogenesis. ACM Transactions on Autonomous and Adaptive Systems (2010) (accepted)Google Scholar
  13. 13.
    Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. BioSystems 98(3), 193–203 (2009)CrossRefGoogle Scholar
  14. 14.
    Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Systems 1, 495–502 (1987)zbMATHGoogle Scholar
  15. 15.
    Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain evolution. Artificial Life 8, 223–246 (2002)CrossRefGoogle Scholar
  16. 16.
    Hsieh, M.A., Kumar, V.: Pattern generation with multiple robots. In: International Conference on Robotics and Automation. IEEE Press, Los Alamitos (2006)Google Scholar
  17. 17.
    Jin, Y.: Morphogenetic robotics (2010),
  18. 18.
    Jin, Y., Guo, H., Meng, Y.: Robustness analysis and failure recovery of a bio-inspired self-organizing multi-robot system. In: Third IEEE International Conference on Self-Adaptive and Self-organizing Systems, pp. 154–164. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  19. 19.
    Jin, Y., Guo, H., Meng, Y.: A hierarchical gene regulatory network model for adaptive pattern formation in changing environment. IEEE Transactions on Robotics (submitted 2011)Google Scholar
  20. 20.
    Jin, Y., Meng, Y.: Morphogenetic robotics: An emerging new field in developmental robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Reviews and Applications (2010) (accepted)Google Scholar
  21. 21.
    Jin, Y., Schramm, L., Sendhoff, B.: A gene regulatory model for the development of primitive nervous systems. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 48–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Jin, Y., Trommler, J.: A fitness-independent evolvability measure for evolutionary developmental systems. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (2010) (accepted)Google Scholar
  23. 23.
    Kalat, J.W.: Biological Psychology. Wadsworth Publishing, Belmont (2008)Google Scholar
  24. 24.
    Kodjabachian, J., Meyer, J.-A.: Development, learning and evolution in animats. In: From Perception to Action. IEEE Press, New York (1994)Google Scholar
  25. 25.
    Komosinski, M., Ulatowski, S.: Framsticks: Towards a simulation of a nature-like world, creatures and evolution. In: European Conference on Artificial Life, pp. 261–265 (1999)Google Scholar
  26. 26.
    Lee, J.A., Sitte, J.: Morphogenetic evolvable hardware controllers for robot walking. In: 2nd International Symposium on Autonomous Minirobots for Research and Edutainment (February 2003)Google Scholar
  27. 27.
    Lee, P.N., Kumburegama, S., Marlow, H.Q., Martindale, M.Q., Wikramanayake, A.H.: Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, nematostella vectensis, is mediated by dishevelled. Developmental Biology 310(1), 169–186 (2007)CrossRefGoogle Scholar
  28. 28.
    Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: A survey. Connection Sciences 15, 151–190 (2003)CrossRefGoogle Scholar
  29. 29.
    Mamei, M., Vasirani, M., Zambonelli, M.: Experiments in morphogenesis in swarms of simple mobile robot. Applied Artificial Life 18, 903–919 (2004)CrossRefGoogle Scholar
  30. 30.
    Meiner, D.: Swarm robotics algorithm: A survey. Technical report, University of Maryland (May 2007)Google Scholar
  31. 31.
    Meng, Y., Guo, H., Jin, Y.: A morphogenetic approach to flexible and robust shape formation for swarm robotic systems. Robotics and Autonomous Systems (2010) (submitted)Google Scholar
  32. 32.
    Meng, Y., Jin, Y., Yin, J., Conforth, M.: Human activity detection using spiking neural networks regulated by a gene regulatory network. In: International Joint Conference on Neural Networks, pp. 2232–2237 (2010)Google Scholar
  33. 33.
    Meng, Y., Zhang, Y., Jin, Y.: A morphogenetic approach to self-reconfigurable modular robots using a hybrid hierarchical gene regulatory network. In: 12th International Conference on the Synthesis and Simulation of Living Systems (ALIFE XII), pp. 765–772 (2010)Google Scholar
  34. 34.
    Meng, Y., Zhang, Y., Jin, Y.: Autonomous self-reconfiguration of modular robots using a hierarchical mechanochemical mode. IEEE Computational Intelligence Magazine 6(1), 43–54 (2011)CrossRefGoogle Scholar
  35. 35.
    Meng, Y., Zhang, Y., Sampath, A., Jin, Y., Sendhoff, B.: Cross-ball: a new morphogenetic self-reconfigurable modular robot. In: IEEE International Conference on Robotics and Automation (ICRA) (accepted 2011)Google Scholar
  36. 36.
    Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. Journal of Theoretical Biology 52, 429–453 (1991)CrossRefGoogle Scholar
  37. 37.
    Müller, G.B.: Evo-devo: extending the evolutionary synthesis. Nature Review Genetics, 943–949 (2007)Google Scholar
  38. 38.
    Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system - navigation, docking, and integration of M-TRAN. IEEE Robotics & Automation Magazine 14, 56–63 (2008)CrossRefGoogle Scholar
  39. 39.
    Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robotics &Automation Magazine, 71–78 (March 2007)Google Scholar
  40. 40.
    Mytilinaios, E., Marcus, D., Desnoyer, M., Lipson, H.: Designed and evolved blueprints for physical artificial life. In: Ninth Int. Conf. Artificial Life (ALIFE IX), pp. 15–20 (2004)Google Scholar
  41. 41.
    Oudeyer, P.-Y., Kaplan, F.: How can we define intrinsic motivation? In: Proceedings of the 8th International Conference on Epigenetic Robotics. LUCS, Brighton (2008)Google Scholar
  42. 42.
    Oudeyer, P.-Y., Kaplan, F., Hafner, V.V.: Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation 11(1), 265–286 (2007)CrossRefGoogle Scholar
  43. 43.
    Paenke, I., Branke, J., Jin, Y.: On the influence of phenotype plasticity on genotype diversity. In: 2007 IEEE Symposium on Foundations of Computational Intelligence, pp. 33–40. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  44. 44.
    Paenke, I., Jin, Y., Branke, J.: Balancing population and individual level of adaptation in changing environments. Adaptive Behavior 17(2), 153–174 (2009)CrossRefGoogle Scholar
  45. 45.
    Pollack, J., Lipson, H., Funes, P., Ficici, S., Hornby, G.: Coevolutionary robotics. In: Evolvable Hardware, pp. 208–216 (1999)Google Scholar
  46. 46.
    Nolfi, S., Floreano, D.: Evolutionary Robotics. The MIT Press, Cambridge (2004)Google Scholar
  47. 47.
    Sanes, D.H., Reh, T.A., Harris, W.A.: Development of Nervous Systems, 2nd edn. Academic Press, London (2006)Google Scholar
  48. 48.
    Schramm, L., Jin, Y., Sendhoff, B.: Emerged coupling of motor control and morphological development in evolution of multi-cellular animates. In: 10th European Conference on Artificial Life (2009)Google Scholar
  49. 49.
    Shen, W., Will, P., Galstyan, A.: Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots 17, 93–105 (2004)CrossRefGoogle Scholar
  50. 50.
    Simons, K., Karsenti, E., St Johnston, D., Wijer, C., Swarminathan, S. (eds.): Self-Organization and Morphogenesis in Biological Systems, Schloss Ringberg, Tegersee, Germany (December 2006)Google Scholar
  51. 51.
    Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1 (1994)Google Scholar
  52. 52.
    Sipper, M., Sanchez, E., mange, D., Tomassini, M., Perez-Uribe, A., Stuffer, A.: A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Transactions on Evolutionary Computation 1(1), 83–97 (1997)CrossRefGoogle Scholar
  53. 53.
    Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life, 93–130 (2003)Google Scholar
  54. 54.
    Taylor, T., Massey, C.: Recent developments in the evolution of morphologies and controllers for physically simulated creatures. Artificial Life 7(1), 77–87 (2001)CrossRefGoogle Scholar
  55. 55.
    Wolpert, L.: Principles of Development. Oxford University Press, Oxford (2002)Google Scholar
  56. 56.
    Yu, C.-H., Haller, K., Ingber, D., Nagpal, R.: Morpho: A self-deformable modular robot inspired by cellular structure. In: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3571–3578. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yaochu Jin
    • 1
  • Yan Meng
    • 2
  1. 1.Department of ComputingUniversity of SurreyGuildfordUK
  2. 2.Department of Electrical and Computer EngineeringStevens Institute of TechnologyHobokenUSA

Personalised recommendations