Skip to main content

Introduction to turbulence of multi-phase flows

  • Chapter
Multiphase Flow Dynamics 4
  • 3952 Accesses

Abstract

Single phase turbulence is complex and still considered as a not resolved issue in science. Multiphase flow turbulence is much more complex and of course still far from its final accurate mathematical description. Systematic experimental results for steady states are gained and some theories are developed mainly for low concentration particle- and bubble-flows in simple geometry but not for all flow pattern in transient multi-phase flows in general. However, the need of optimum design of industrial facility operating with multiphase flows dictates intensive activities of many scientists in this field. For such a scientific discipline, which is being in “flow”, a summary of the state of the art will help engineers to use what is already achieved and help scientists to understand better where is the lack of physical understanding that has to be filled. This is the reason to write this Section, well knowing the limited range of knowledge accumulated so far. In this work I will review the existing approaches and try to lead them to one that is promising for practical analysis. I will deliberately concentrate my attention to a pragmatic modeling that is far from “decorative mathematics”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akai, M., Inoue, A., Aoki, S.: The prediction of the stratified two-phase flow with a two-equation model of turbulence. Int. J. Multiphase Flow 7, 21–29 (1981)

    Article  MATH  Google Scholar 

  • Amsden, A.A., Butler, T.D., O’Rourke, P.J., Ramshaw, J.D.: KIVA-A comprehensive model for 2-D and 3-D engine simulations, paper 850554 (1985)

    Google Scholar 

  • Antal, S., Kurul, N., Podowski, M.Z., Lahey Jr., R.T.: The development of multidimensional modeling capabilities for annular flows. In: 3th Int. Conf. On Multiphase Flows, ICMF 1998, Lyon, France, June 8-11 (1998)

    Google Scholar 

  • Batchelor, G.K.: An introduction to fluid dynamics. Cambridge Univ. Press, Cambs (1967)

    MATH  Google Scholar 

  • Batchelor, G.K.: A new theory of the instability of a uniform fluidized bed. J. Fluid Mechanic 193, 75–110 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Besnard, D.C., Harlow, F.H.: Turbulence in two-field incompressible flow. LA-10187-MS, UC-34, Los Alamos National Laboratory (May 1985)

    Google Scholar 

  • Besnard, D.C., Harlow, F.H.: Turbulence in multiphase flow. Int. J. Multiphase Flow 6(6), 679–699 (1988)

    Article  Google Scholar 

  • Boussinesq, J.: Essai sur la théorie des eaux courantes. Mem. Pr´s. Acad. Sci. 23, 46 (1877)

    Google Scholar 

  • Brauer, H.: Turbulence in multiphase flow. Ger. Chem. Eng. 3, 149–161 (1980)

    Google Scholar 

  • Carver, M.B.: Numerical computation of phase distribution in two phase flow using the two-dimensional TOFFEA code. Chalk River Nuclear Laboratories, AECL-8066 (August 1983)

    Google Scholar 

  • Corrsin, S.: Estimates of the relations between Eulerian and the Lagraian scales in large Reynolds number turbulence. J. Atmos. Sci. 20, 115–119 (1963)

    Article  Google Scholar 

  • Gosman, A.D., et al.: AIChE J. 38, 1946–1956 (1992)

    Article  Google Scholar 

  • Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin share flows. J. of Fluid Mechanics 52(4), 609–638 (1972)

    Article  MATH  Google Scholar 

  • Hinze, J.O.: Fundamentals of hydrodynamics of splitting in dispersion processes. AIChE Journal 1, 284–295 (1955)

    Article  Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics. Fundamentals, 3d extended edn., vol. 1. Springer, New York (2007a)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics. Thermal and mechanical interactions, 3d extended edn., vol. 2. Springer, New York (2007b)

    Google Scholar 

  • Kolmogoroff, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. U.S.S.R. 30, 825–828 (1941)

    Google Scholar 

  • Komogorov, A.N.: Equations of turbulent motion of incompressible fluid. Isv. Akad. Nauk. SSR, Seria fizicheska Vi. (1-2), 56–58 (1942)

    Google Scholar 

  • Lahey, R.T.: Turbulence and two phase distribution phenomena in two-phase flow. In: Proc. of Transient Phenomena in Multiphase Flow, Dubrovnik, May 24-30 (1987)

    Google Scholar 

  • Lahey Jr., R.T., Lopez de Bertodano, M., Jones Jr., O.C.: Phase distribution in complex geometry conditions. Nuclear Engineering and Design 141, 177–201 (1993)

    Article  Google Scholar 

  • Lee, S.L., Lahey Jr., R.T., Jones Jr., O.C.: The prediction of two-phase turbulence and phase distribution phenomena using a k-e model. Japanese J. Multiphase Flow 3(4), 335–368 (1989)

    Google Scholar 

  • Lee, M.M., Hanratty, T.J., Adrian, R.J.: An axial viewing photographic technique to study turbulent characteristics of particles. Int. J. Multiphase Flow 15, 787–802 (1989b)

    Article  Google Scholar 

  • Loth, E.: Int. J. Multiphase Flow 27, 1051–1063 (2001)

    Article  MATH  Google Scholar 

  • Maekawa (1990)

    Google Scholar 

  • Myong, K., Kasagi, N.: Trans. JSME, Ser.B 54-507, 3003–3009 (1988a)

    Google Scholar 

  • Myong, K., Kasagi, N.: Trans. JSME, Ser.B, 54-508, 3512-3520 (1988b)

    Google Scholar 

  • Pei, B.S.: Prediction of critical heat flux in flow boiling at low quality. PhD Thesis, University of Cincinnati, Cincinnati, Ohio (1981)

    Google Scholar 

  • Prandtl, L.H.: Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr. Akad. Wiss., Göttingen, Math.-Phys. Klasse, p. 6 (1945)

    Google Scholar 

  • Reeks, M.W.: On the dispersion of small particles suspended in an isotropic turbulent field. Int. J. Multiphase Flow 3, 319 (1977)

    Article  Google Scholar 

  • Reeks, M.W.: On a kinetic equation for transport of particles in turbulent flows. Phys. Fluids A3, 446–456 (1991)

    Google Scholar 

  • Reeks, M.W.: On the continuum equation for dispersed particles in non-uniform. Phys. Fluids A4, 1290–1303 (1992)

    Google Scholar 

  • Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Cambridge Phil. Trans.,123-164 (May 1894)

    Google Scholar 

  • Rodi, W.: Turbulence models and their application in hydraulics – a state of the art review, IId rev. edn., University of Karlsruhe (February 1984)

    Google Scholar 

  • Sawford, B.L.: Phys. Fluids A 3(6), 1577 (1991)

    Article  Google Scholar 

  • Scriven, L.E.: Penetration theory modelling. Chem. Engng Educ. 3, 94–102 (1969)

    Google Scholar 

  • Snyder, W.H., Lumley, J.L.: Some measurements of a particle velocity autocorrelation function in a turbulent flow. J. Fluid Mech. 48, 41–71 (1971)

    Article  Google Scholar 

  • Sommerfeld, M.: Modeling of particle-wall collisions in confined gas-particle flows. Int. J. Multiphase Flow 26, 905–926 (1992)

    Article  Google Scholar 

  • Somerfeld, M., Zivkovic, G.: Recent advances in numerical simulation of pneumatic conveying through pipe systems. In: Computational Methods in Applied Sciences, p. 201 (1992)

    Google Scholar 

  • Stokes, G.G.: Cambridge Phil. Trans. 9, 57

    Google Scholar 

  • Stokes, G.G.: On the theories of the internal friction of fluids in motion and of the (1845)

    Google Scholar 

  • Taylor, G.I.: Proc. Roy. Soc. A 151, 429 (1935)

    Google Scholar 

  • Troshko, A.A., Hassan, Y.A.: A two-equations turbulence model of turbulent bubbly flow. Int. J. of Multiphase Flow 27, 1965–2000 (2001)

    Article  MATH  Google Scholar 

  • Wolkov, E.P., Zeichik, L.I., Pershukov, V.A.: Modelirovanie gorenia twerdogo topliva. Nauka, Moscow (1994) (in Russian)

    Google Scholar 

  • Zhu, H., Songling, L.: Numerical simulation of transient flow and heat transfer in smooth pipe. Int. J. Heat Mass Transfer 34(10), 2475–2482 (1991)

    Article  MATH  Google Scholar 

  • Zierep, J.: Einige moderne Aspekte der Stroemungsmechanik. Zeitschrift fuer Flugwissenschaften und Weltraumforschung 7(6), 357–361 (1983)

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Introduction to turbulence of multi-phase flows. In: Multiphase Flow Dynamics 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20749-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20749-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20748-8

  • Online ISBN: 978-3-642-20749-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics