Precedence Automata and Languages

  • Violetta Lonati
  • Dino Mandrioli
  • Matteo Pradella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6651)

Abstract

Operator precedence grammars define a classical Boolean and deterministic context-free family (called Floyd languages or FLs). FLs have been shown to strictly include the well-known visibly pushdown languages, and enjoy the same nice closure properties. We introduce here Floyd automata, an equivalent operational formalism for defining FLs. This also permits to extend the class to deal with infinite strings to perform for instance model checking.

Keywords

Operator precedence languages Deterministic Context-Free languages Omega languages Pushdown automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Floyd, R.W.: Syntactic analysis and operator precedence. Journ. ACM 10(3), 316–333 (1963)CrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC: ACM Symposium on Theory of Computing, STOC (2004)Google Scholar
  3. 3.
    Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide, p. 664. Springer, New York (2008)Google Scholar
  4. 4.
    Crespi Reghizzi, S., Mandrioli, D.: Algebraic properties of structured context-free languages: old approaches and novel developments. In: WORDS 2009 - 7th Int. Conf. on Words (2009) (preprints), http://arXiv.org/abs/0907.2130
  5. 5.
    Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Caucal, D.: Boolean algebras of unambiguous context-free languages. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2008, Dagstuhl, Germany (2008)Google Scholar
  8. 8.
    Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator precedence languages. Information and Control 37, 115–133 (1978)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 214–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, Reading (1978)MATHGoogle Scholar
  11. 11.
    Salomaa, A.K.: Formal Languages. Academic Press, New York (1973)MATHGoogle Scholar
  12. 12.
    Fischer, M.J.: Some properties of precedence languages. In: STOC 1969: Proc. First Annual ACM Symp. on Theory of Computing, pp. 181–190. ACM, New York (1969)Google Scholar
  13. 13.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Violetta Lonati
    • 1
  • Dino Mandrioli
    • 2
  • Matteo Pradella
    • 2
  1. 1.DSIUniversità degli Studi di MilanoMilanoItaly
  2. 2.DEIPolitecnico di MilanoMilanoItaly

Personalised recommendations