Automatic Data-Abstraction in Model Checking Multi-Agent Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6572)


We present an automatic data-abstraction technique for the verification of the universal fragment of the temporal-epistemic logic CTLK. We show the correctness of the methodology and present an implementation operating on ISPL models, the input files for MCMAS, a model checker for multi-agent systems. The experimental results point to the attractiveness of the technique in a number of examples in the multi-agent systems domain.


Model Check MultiAgent System Reachable State Atomic Proposition Logic Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  3. 3.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A data symmetry reduction technique for temporal-epistemic logic. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 69–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking multi-agent systems. In: AAMAS 2009 (2009)Google Scholar
  6. 6.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)Google Scholar
  7. 7.
    Dechesne, F., Orzan, S., Wang, Y.: Refinement of kripke models for dynamics. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 111–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Science of Computer Programming 2(3), 241–266 (1982)CrossRefzbMATHGoogle Scholar
  9. 9.
    van Ditmarsch, H., van der Hoek, W., van der Meyden, R., Ruan, J.: Model Checking Russian Cards. Electr. Notes Theor. Comput. Sci. 149(2), 105–123 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Enea, C., Dima, C.: Abstractions of multi-agent systems. In: Burkhard, H., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 11–21. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  12. 12.
    Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Graf, S., Saïdi, H.: Construction of abstract state graphs with pvs. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter, M., Wozna, B., Zbrzezny, A.: Verics 2007 - a model checker for knowledge and real-time. Fundamenta Informaticae 85(1-4), 313–328 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: A model checker for the verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wooldridge, M.: Computationally grounded theories of agency. In: Durfee, E. (ed.) ICMAS, pp. 13–22. IEEE Press, Los Alamitos (2000)Google Scholar
  18. 18.
    Wooldridge, M.: An introduction to MultiAgent systems, 2nd edn. Wiley, Chichester (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.Computing LaboratoryOxford UniversityOxfordUK

Personalised recommendations