Preservation of the Discrete Geostrophic Equilibrium in Shallow Water Flows

  • E. AudusseEmail author
  • R. Klein
  • D. D. Nguyen
  • S. Vater
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)


We are interested in the numerical simulation of large scale phenomena in geophysical flows. In these cases, Coriolis forces play an important role and the circulations are often perturbations of the so-called geostrophic equilibrium. Hence, it is essential to design a numerical strategy that preserves a discrete version of this equilibrium. In this article we work on the shallow water equations in a finite volume framework and we propose a first step in this direction by introducing an auxiliary pressure that is in geostrophic equilibrium with the velocity field and that is computed thanks to the solution of an elliptic problem. Then the complete solution is obtained by working on the deviating part of the pressure. Some numerical examples illustrate the improvement through comparisons with classical discretizations.


Geostrophic Adjustment Shallow Water Flows Finite Volume Method Well-balanced Scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Audusse, R.Klein, A. Owinoh, Conservative discretization of Coriolis force in a finite volume framework, Journal of Computational Physics, 228, 2934-2950 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 2050–2065 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    N. Botta, R. Klein, S. Langenberg, S. Lützenkirchen, Well-balanced finite volume methods for nearly hydrostatic flows, JCP, 196, 539–565 (2004).zbMATHCrossRefGoogle Scholar
  4. 4.
    F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Birkaüser (2004).Google Scholar
  5. 5.
    F. Bouchut, J. Le Sommer, V. Zeitlin, Frontal geostrophic adjustment and nonlinear wave phenomena in one dimensional rotating shallow water. Part 2: high-resolution numerical simulations, J. Fluid Mech., 513, 35–63 (2004).Google Scholar
  6. 6.
    M.J. Castro, J.A. Lopez, C. Pares, Finite Volume Simulation of the Geostrophic Adjustment in a Rotating Shallow-Water System SIAM J. on Scientific Computing, 31, 444–477 (2008).Google Scholar
  7. 7.
    A. Harten, P. Lax, B. Van Leer, On upstream differencing and Godunov type schemes for hyperbolic conservation laws, SIAM Review, 25, 235–261 (1983).CrossRefGoogle Scholar
  8. 8.
    A. Kuo, L. Polvani, Time-dependent fully nonlinear geostrophic adjustment, J. Phys. Oceanogr. 27, 1614–1634 (1997).CrossRefGoogle Scholar
  9. 9.
    R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Camb. Univ. Press (2002).zbMATHCrossRefGoogle Scholar
  10. 10.
    N. Panktratz, J.R. Natvig, B. Gjevik, S. Noelle, High-order well-balanced finite-volume schemes for barotropic flows. Development and numerical comparisons, Ocean Modelling, 18, 53–79 (2007).CrossRefGoogle Scholar
  11. 11.
    J. Pedlosky, Geophysical Fluid Dynamics, Springer, 2nd edition (1990).Google Scholar
  12. 12.
    G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation, Cambridge University Press (2006).Google Scholar
  13. 13.
    S. Vater, R. Klein, Stability of a Cartesian Grid Projection Method for Zero Froude Number Shallow Water Flows, Numerische Mathematik, 113, 123–161 (2009).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.LAGAUniversité Paris NordVilletaneuseFrance
  2. 2.Institut für MathematikFreie Universität BerlinBerlinGermany

Personalised recommendations