Asymptotic Preserving Finite Volumes Discretization For Non-Linear Moment Model On Unstructured Meshes

  • Emmanuel FranckEmail author
  • Christophe Buet
  • Bruno Després
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)


In this work we present a new finite volume discretization of the nonlinear model M 1 [2]. This new method is based on nodal solver for hyperbolic systems [3, 6] and overcomes, on 2-D unstructured meshes, the problem of the inconsistent diffusion limit for schemes based on classical edge formulation. We provide numerical examples to illustrate the properties of the method.


asymptotic preserving M1 model unstructured diffusion limit GLACE scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Berthon, P. Charrier and B. Dubroca: An HLLC scheme to solve M 1 model of radiative transfer in two space dimensions, J. Scie. Comput., 31 (2007), pp. 347–389MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J.L. Feugeas and B. Dubroca, Entropy moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci., Paris, Sér. I, Math. 329, No.10, 915-920 (1999).Google Scholar
  3. 3.
    P-H. Maire, R. Abgrall, J. Breil, J. Ovadia A cell-centered lagragian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. Vol 29, No. 4, pp. 1781-1824. 2007.Google Scholar
  4. 4.
    C. Buet, B. Després: A gas dynamics scheme for a two moments model of radiative transfer, Mathematical models and numerical methods for radiative transfer, Panorama er synthèse 2009.Google Scholar
  5. 5.
    C. Buet, B. Després, E. Franck: Design of asymptotic preserving schemes for hyperbolic heat equation on unstructured meshes. Preprint LJLL UPMC, 2010.Google Scholar
  6. 6.
    G. Carré, S. Del Pino, B. Desprès, E. Labourasse: A Cell-centered lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, JCP vol. 228 (2009) no14, pp. 5160-518.zbMATHGoogle Scholar
  7. 7.
    L. Gosse, G. Toscani: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Acad. Sci Paris,Ser, I 334 (2002) 337-342.Google Scholar
  8. 8.
    G. Kluth, B. Després: Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational Physics, Volume 229, December 2010Google Scholar
  9. 9.
    S. Jin, D. Levermore: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. JCP 126, 449-467, 1996.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emmanuel Franck
    • 1
    Email author
  • Christophe Buet
    • 1
  • Bruno Després
    • 2
  1. 1.CEADAM, DIFArpajonFrance
  2. 2.Laboratoire Jacques Louis LionsUniversité Pierre et Marie CurieParis, Cedex 5France

Personalised recommendations