Abstract
Historically the finite volume methods have been developed for the numerical integration of conservation laws. In this study we present some recent results on the application of such schemes to dispersive PDEs. Namely, we solve numerically a representative of Boussinesq type equations in view of important applications to the coastal hydrodynamics. Numerical results of the runup of a moderate wave onto a non-uniform beach are presented along with great lines of the employed numerical method (see D. Dutykh et al. (2011) [6] for more details).
Keywords
- dispersive wave
- runup
- Boussinesq equations
- shallow water
MSC2010: 65M08, 76B15
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Audusse, E., Bouchut, F., Bristeau, O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. of Sc. Comp. 25, 2050–2065 (2004)
Benjamin, T., Olver, P.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech 125, 137–185 (1982)
Delis, A.I., Katsaounis, T.: Relaxation schemes for the shallow water equations. Int. J. Numer. Meth. Fluids 41, 695–719 (2003)
Dutykh, D., Dias, F.: Dissipative Boussinesq equations. C. R. Mecanique 335, 559–583 (2007)
Dutykh, D., Dias, F.: Water waves generated by a moving bottom. In: A. Kundu (ed.) Tsunami and Nonlinear waves. Springer Verlag (Geo Sc.) (2007)
Dutykh, D., Katsaounis, T., Mitsotakis, D.: Finite volume schemes for dispersive wave propagation and runup. Accepted to Journal of Computational Physics http://hal.archives-ouvertes.fr/hal-00472431/ (2011)
Dutykh, D., Poncet, R., Dias, F.: Complete numerical modelling of tsunami waves: generation, propagation and inundation. Submitted http://arxiv.org/abs/1002.4553 (2010)
Fokas, A.S., Pelloni, B.: Boundary value problems for Boussinesq type systems. Math. Phys. Anal. Geom. 8, 59–96 (2005)
Ghidaglia, J.M., Kumbaro, A., Coq, G.L.: On the numerical solution to two fluid models via cell centered finite volume method. Eur. J. Mech. B/Fluids 20, 841–867 (2001)
Harten, A., Osher, S.: Uniformly high-order accurate nonscillatory schemes, I. SIAM J. Numer. Anal. 24, 279–309 (1987)
Hibberd, S., Peregrine, D.: Surf and run-up on a beach: a uniform bore. J. Fluid Mech. 95, 323–345 (1979)
Kervella, Y., Dutykh, D., Dias, F.: Comparison between three-dimensional linear and nonlinear tsunami generation models. Theor. Comput. Fluid Dyn. 21, 245–269 (2007)
van Leer, B.: Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’ method. J. Comput. Phys. 32, 101–136 (1979)
Peregrine, D.H.: Long waves on a beach. J. Fluid Mech. 27, 815–827 (1967)
Simon, M.: Wave-energy extraction by a submerged cylindrical resonant duct. Journal of Fluid Mechanics 104, 159–187 (1981)
Tadepalli, S., Synolakis, C.E.: The run-up of N-waves on sloping beaches. Proc. R. Soc. Lond. A 445, 99–112 (1994)
Titov, V., González, F.: Implementation and testing of the method of splitting tsunami (MOST) model. Tech. Rep. ERL PMEL-112, Pacific Marine Environmental Laboratory, NOAA (1997)
Titov, V.V., Synolakis, C.E.: Numerical modeling of tidal wave runup. J. Waterway, Port, Coastal, and Ocean Engineering 124, 157–171 (1998)
Acknowledgements
D. Dutykh acknowledges the support from French Agence Nationale de la Recherche, project MathOcean (Grant ANR-08-BLAN-0301-01) and Ulysses Program of the French Ministry of Foreign Affairs under the project 23725ZA. The work of Th. Katsaounis was partially supported by European Union FP7 program Capacities(Regpot 2009-1), through ACMAC (http://acmac.tem.uoc.gr).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dutykh, D., Katsaounis, T., Mitsotakis, D. (2011). Dispersive wave runup on non-uniform shores. In: Fořt, J., Fürst, J., Halama, J., Herbin, R., Hubert, F. (eds) Finite Volumes for Complex Applications VI Problems & Perspectives. Springer Proceedings in Mathematics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20671-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-20671-9_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20670-2
Online ISBN: 978-3-642-20671-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)