Advertisement

Dispersive wave runup on non-uniform shores

  • Denys DutykhEmail author
  • Theodoros Katsaounis
  • Dimitrios Mitsotakis
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)

Abstract

Historically the finite volume methods have been developed for the numerical integration of conservation laws. In this study we present some recent results on the application of such schemes to dispersive PDEs. Namely, we solve numerically a representative of Boussinesq type equations in view of important applications to the coastal hydrodynamics. Numerical results of the runup of a moderate wave onto a non-uniform beach are presented along with great lines of the employed numerical method (see D. Dutykh et al. (2011) [6] for more details).

Keywords

dispersive wave runup Boussinesq equations shallow water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

D. Dutykh acknowledges the support from French Agence Nationale de la Recherche, project MathOcean (Grant ANR-08-BLAN-0301-01) and Ulysses Program of the French Ministry of Foreign Affairs under the project 23725ZA. The work of Th. Katsaounis was partially supported by European Union FP7 program Capacities(Regpot 2009-1), through ACMAC (http://acmac.tem.uoc.gr).

References

  1. 1.
    Audusse, E., Bouchut, F., Bristeau, O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. of Sc. Comp. 25, 2050–2065 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Benjamin, T., Olver, P.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech 125, 137–185 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Delis, A.I., Katsaounis, T.: Relaxation schemes for the shallow water equations. Int. J. Numer. Meth. Fluids 41, 695–719 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dutykh, D., Dias, F.: Dissipative Boussinesq equations. C. R. Mecanique 335, 559–583 (2007)zbMATHGoogle Scholar
  5. 5.
    Dutykh, D., Dias, F.: Water waves generated by a moving bottom. In: A. Kundu (ed.) Tsunami and Nonlinear waves. Springer Verlag (Geo Sc.) (2007)Google Scholar
  6. 6.
    Dutykh, D., Katsaounis, T., Mitsotakis, D.: Finite volume schemes for dispersive wave propagation and runup. Accepted to Journal of Computational Physics http://hal.archives-ouvertes.fr/hal-00472431/ (2011)
  7. 7.
    Dutykh, D., Poncet, R., Dias, F.: Complete numerical modelling of tsunami waves: generation, propagation and inundation. Submitted http://arxiv.org/abs/1002.4553 (2010)
  8. 8.
    Fokas, A.S., Pelloni, B.: Boundary value problems for Boussinesq type systems. Math. Phys. Anal. Geom. 8, 59–96 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ghidaglia, J.M., Kumbaro, A., Coq, G.L.: On the numerical solution to two fluid models via cell centered finite volume method. Eur. J. Mech. B/Fluids 20, 841–867 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Harten, A., Osher, S.: Uniformly high-order accurate nonscillatory schemes, I. SIAM J. Numer. Anal. 24, 279–309 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hibberd, S., Peregrine, D.: Surf and run-up on a beach: a uniform bore. J. Fluid Mech. 95, 323–345 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kervella, Y., Dutykh, D., Dias, F.: Comparison between three-dimensional linear and nonlinear tsunami generation models. Theor. Comput. Fluid Dyn. 21, 245–269 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    van Leer, B.: Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’ method. J. Comput. Phys. 32, 101–136 (1979)CrossRefGoogle Scholar
  14. 14.
    Peregrine, D.H.: Long waves on a beach. J. Fluid Mech. 27, 815–827 (1967)zbMATHCrossRefGoogle Scholar
  15. 15.
    Simon, M.: Wave-energy extraction by a submerged cylindrical resonant duct. Journal of Fluid Mechanics 104, 159–187 (1981)zbMATHCrossRefGoogle Scholar
  16. 16.
    Tadepalli, S., Synolakis, C.E.: The run-up of N-waves on sloping beaches. Proc. R. Soc. Lond. A 445, 99–112 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Titov, V., González, F.: Implementation and testing of the method of splitting tsunami (MOST) model. Tech. Rep. ERL PMEL-112, Pacific Marine Environmental Laboratory, NOAA (1997)Google Scholar
  18. 18.
    Titov, V.V., Synolakis, C.E.: Numerical modeling of tidal wave runup. J. Waterway, Port, Coastal, and Ocean Engineering 124, 157–171 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Denys Dutykh
    • 1
    Email author
  • Theodoros Katsaounis
    • 2
  • Dimitrios Mitsotakis
    • 3
  1. 1.LAMA, UMR 5127 CNRSUniversité de SavoieLe Bourget-du-Lac CedexFrance
  2. 2.Department of Applied MathematicsUniversity of CreteHeraklionGreece
  3. 3.IMAUniversity of MinnesotaMinneapolisUSA

Personalised recommendations