Advertisement

Penalty Methods for the Hyperbolic System Modelling the Wall-Plasma Interaction in a Tokamak

  • Philippe AngotEmail author
  • Thomas Auphan
  • Olivier Guès
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)

Abstract

The penalization method is used to take account of obstacles in a tokamak, such as the limiter. We study a non linear hyperbolic system modelling the plasma transport in the area close to the wall. A penalization which cuts the transport term of the momentum is studied. We show numerically that this penalization creates a Dirac measure at the plasma-limiter interface which prevents us from defining the transport term in the usual sense. Hence, a new penalty method is proposed for this hyperbolic system and numerical tests reveal an optimal convergence rate without any spurious boundary layer.

Keywords

hyperbolic problem penalization method numerical tests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work has been funded by the ANR ESPOIR (Edge Simulation of the Physics Of ITER Relevant turbulent transport)and the Fédération nationale de Recherche Fusion par Confinement Magnétique (FR-FCM). We thank Guillaume Chiavassa, Guido Ciraolo and Philippe Ghendrih for fruitful discussions.

References

  1. 1.
    Angot, P., Auphan, P., Guès, O.: An optimal penalty method for the hyperbolic system modelling the edge plasma transport in a tokamak. Preprint in preparation (2011)Google Scholar
  2. 2.
    Auphan, T.: Méthodes de pénalisation pour des systèmes hyperboliques application au transport de plasma en bord de tokamak. Master’s thesis, Ecole Centrale Marseille (2010)Google Scholar
  3. 3.
    Benzoni-Gavage, S., Serre, D.: Multidimensional hyperbolic partial differential equations. First-order systems and applications. Oxford Mathematical Monographs. Oxford University Press (2007)Google Scholar
  4. 4.
    Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32, 891–933 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fornet, B.: Small viscosity solution of linear scalar 1-d conservation laws with one discontinuity of the coefficient. Comptes Rendus Mathematique 346(11-12), 681 – 686 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fornet, B., Guès, .: Penalization approach of semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete and Continuous Dynamical Systems 23(3), 827 – 845 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gallouët, T., Hérard, J.M., Seguin, N.: Some approximate godunov schemes to compute shallow-water equations with topography. Computers and Fluids 32(4), 479 – 513 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Guès, O.: Problème mixte hyperbolique quasi-linéaire caractéristique. Communications in Partial Differential Equations 15, 595–654 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Isoardi, L., Chiavassa, G., Ciraolo, G., Haldenwang, P., Serre, E., Ghendrih, P., Sarazin, Y., Schwander, F., Tamain, P.: Penalization modeling of a limiter in the tokamak edge plasma. Journal of Computational Physics 229(6), 2220 – 2235 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Poupaud, F., Rascle, M.: Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Communications in Partial Differential Equations 22, 225–267 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rauch, J.B.: Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Amer. Math. Soc. 291(1), 167–187 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Rauch, J.B., Massey, F.J.I.: Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Amer. Math. Soc. 189, 303–318 (1974)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Tamain, P.: Etude des flux de matière dans le plasma de bord des tokamaks, alimentation, transport et turbulence. Ph.D. thesis, Université de Provence (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Topologie et Probabilités, Centre de Mathématiques et InformatiqueUniversité de ProvenceMarseille Cedex 13France

Personalised recommendations