Asymptotic preserving schemes in the quasi-neutral limit for the drift-diffusion system

  • Chainais-Hillairet ClaireEmail author
  • Vignal Marie-Hélène
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)


We are interested in the drift-diffusion system near quasi-neutrality. For this system, classical explicit schemes are decoupled but subject to severe numerical constraints in the quasi-neutral regime. By constrast, the implicit discretizations are unconditionally stable but non linearly coupled. Then, an iterative method must be used yielding a large numerical cost. Here, we propose a new decoupled asymptotic preserving scheme. We perform one and two dimensional numerical experiments which show its good behavior.


drift-diffusion asymptotic preserving schemes quasi-neutral regime 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezzi F., Marini L.D., Pietra P.: Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26, 1342–1355 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. M2AN 37(2),319–338 (2003).Google Scholar
  3. 3.
    Chainais-Hillairet, C., Peng, Y.-J.: Finite volume approximation for degenerate drift-diffusion system in several space dimensions. M3AS 14(3), 461–481 (2004).Google Scholar
  4. 4.
    Chatard, M.: Asymptotic behavior of the Scharfetter-Gummel scheme for the drift-diffusion model. Submitted to this conference.Google Scholar
  5. 5.
    Crispel P., Degond P., Vignal M.-H.: An asymptotic preserving scheme for the two-fluid EulerŰPoisson model in the quasineutral limit, J. Comput. Phys. 223, 208–234 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Degond P., Deluzet F., Navoret L.: An asymptotically stable particle-in-cell (PIC) scheme for collisionless plasma simulations near quasineutrality. C.R.Acad. Sci. Paris Ser. I 343, 613–618 (2006).Google Scholar
  7. 7.
    Degond P., Deluzet F., Navoret L., Sun A-B, Vignal M.-H.: Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality. Journal of Computational Physics, 229(16), 5630–5652 (2010).Google Scholar
  8. 8.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of numerical analysis VII, pp. 713–1020. North-Holland, Amsterdam (2000).Google Scholar
  9. 9.
    Gasser I.: The initial time layer problem and the quasineutral limit in a nonlinear drift diffusion model for semiconductors, NoDEA, 8 (3), 237–249 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gasser, I., Levermore, C.D., Markowich, P.A., Schmeiser, C.: The initial time layer problem and the quasineutral limit in the semi-conductor drift-diffusion model. Euro. Jnl of Applied Mathematics 12, 497–512 (2001).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Jin S.: Efficient Asymptotic-Preserving (AP) Schemes for Some Multiscale Kinetic Equations. SIAM J. Sci. Comp. 21(441) (1999).Google Scholar
  12. 12.
    Jüngel A.: Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. ZAMM Z. Angew. Math. Mech. 75, 783–799 (1995).zbMATHCrossRefGoogle Scholar
  13. 13.
    Jüngel A., Pietra P.: A discretization scheme for a quasi-hydrodynamic semiconductor model. Math. Models Methods Appl. Sci. 7, 935–955 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lazarov, R.D., Mishev, I.D., Vassilevski, P.S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33-1, 31–55 (1996).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ventzek P.L., Hoekstra R., Kushner M.: Two-dimensional modeling of high plasma density inductively coupled sources for materials processing. J. Vac. Sci. Tech. B 12, 461–477 (1994).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chainais-Hillairet Claire
    • 1
    Email author
  • Vignal Marie-Hélène
    • 2
  1. 1.Laboratoire P. Painlevé, UMR CNRS 8524Université Lille 1Villeneuve d’Ascq CédexFrance
  2. 2.Institut de Mathématiques de Toulouse, UMR 5219Université Paul SabatierToulouse Cedex 9France

Personalised recommendations