Advertisement

On Some High Resolution Schemes for Stably Stratified Fluid Flows

  • Tomáš BodnárEmail author
  • Luděk Beneš
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)

Abstract

The aim of this paper is to present some high-resolution numerical methods in the context of the solution of stably stratified flow of incompressible fluid. Two different numerical methods are applied to a simple 2D test case of wall bounded flow and results are compared and discussed in detail with emphasize on the specific features of stratified flows. The two numerical methods are the AUSM finite–volume scheme and the high order compact finite-difference scheme.

Keywords

finite–volume finite–difference stratification compact AUSM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The financial support for this work was partly provided by the Research Plan MSM 6840770010 of the Ministry of Education of Czech Republic.

References

  1. 1.
    L. Beneš, T. Bodnár, P. Fraunié, K. Kozel, Numerical modelling of pollution dispersion in 3D atmospheric boundary layer, in: B. Sportisse (Ed.), Air Pollution Modelling and Simulation, Springer Verlag, 2002, pp. 69–78.Google Scholar
  2. 2.
    L. Beneš, J. Fürst, Numerical simulation of stratified flows past a body, in: ENUMATH 2009, Springer, 2009, p. 8p.Google Scholar
  3. 3.
    L. Beneš, J. Fürst, Comparison of the two numerical methods for the stratified flow, in: ICFD 2010 10th Conference on Numerical Methods for Fluid Dynamics, Univ. Reading, 2010, p. 6p.Google Scholar
  4. 4.
    T. Bodnár, L. Beneš, K. Kozel, Numerical simulation of flow over barriers in complex terrain, Il Nuovo Cimento C 31 (5–6) (2008) 619–632.Google Scholar
  5. 5.
    T. Bodnár, L. Beneš, Ph. Fraunié, K. Kozel, Application of Compact Finite-Difference Schemes to Simulations of Stably Stratified Fluid Flows, Preprint submitted to Applied Mathematics and Computation (2011).Google Scholar
  6. 6.
    T. Bodnár, K. Kozel, P. Fraunié, Z. Jaňour, Numerical simulation of flow and pollution dispersion in 3D atmospheric boundary layer, Computing and Visualization in Science 3 (1–2) (2000) 3–8.zbMATHGoogle Scholar
  7. 7.
    D. V. Gaitonde, J. S. Shang, J. L. Young, Practical aspects of higher-order numerical schemes for wave propagation phenomena, International Journal for Numerical Methods in Engineering 45 (1999) 1849–1869.zbMATHCrossRefGoogle Scholar
  8. 8.
    S. K. Lele, Compact finite difference schemes with spectral-like resolution, Journal of Computational hysics 103 (1992) 16–42.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    C. W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics 77 (1988) 439–471.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    I. Sládek, T. Bodnár, K. Kozel, On a numerical study of atmospheric 2D and 3D - flows over a complex topography with forest including pollution dispersion, Journal of Wind Engineering and Industrial Aerodynamics 95 (9–11).Google Scholar
  11. 11.
    R. J. Spiteri, S. J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM Journal on Numerical Analysis 40 (2) (2002) 469–491.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. R. Visbal, D. V. Gaitonde, On the use of higher-order finite-difference schemes on curvilinear and deforming meshes, Journal of Computational Physics 181 (2002) 155–185.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of ThermomechanicsAcademy of Sciences of Czech RepublicPrague 8Czech Republic
  2. 2.Department of Tech. Mathematics, Faculty of Mech. EngineeringCzech Technical University in PraguePrague 2Czech Republic

Personalised recommendations