Advertisement

Volume-Agglomeration Coarse Grid In Schwarz Algorithm

  • H. AlcinEmail author
  • O. Allain
  • A. Dervieux
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)

Abstract

The use of volume-agglomeration for introducing one or several levels of coarse grids in an Additive Schwarz multi-domain algorithm is revisited. The purpose is to build an algorithm applicable to elliptic and convective models. The sub-domain solver is ILU. We rely on algebraic coupling between the coarse grid and the Schwarz preconditioner. The Deflation Method and the Balancing Domain Decomposition (BDD) Method are experimented for a coarse grid as well as domain-by-domain coarse gridding. Standard coarse grids are built with the characteristic functions of the sub-domains. We also consider the building of a set of smooth basis functions (analog to smoothed-aggregation methods). The test problem is the Poisson problem with a discontinuous coefficicent. The two options are compared for the standpoint of coarse-grid consistency and for the gain in scability of the global Schwarz iteration.

Keywords

domain decomposition coarse grid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Aubry, F. Mut, R. Lohner, J. R. Cebral, Deflated preconditioned conjugate gradient solvers for the Pressure-Poisson equation, Journal of Computational Physics, 227:24, 10196-10208, 2008.Google Scholar
  2. 2.
    J. Bramble, J. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comput., 55(191):122, 1990.MathSciNetGoogle Scholar
  3. 3.
    S. Brenner, Two-level additive schwarz preconditioners for plate elements, Numerische Mathematik, 72:4, 1994.MathSciNetGoogle Scholar
  4. 4.
    F. Courty, A. Dervieux, Multilevel functional Preconditioning for shape optimisation, IJCFD, 20:7, 481-490, 2006.Google Scholar
  5. 5.
    B. Koobus, S. Camarri, M.V. Salvetti, S. Wornom, A. Dervieux, Parallel simulation of three-dimensional flows: application to turbulent wakes and two-phase compressible flows, Advances in Engineering Software, 38, 328-337, 2007.zbMATHCrossRefGoogle Scholar
  6. 6.
    A.-C. Lesage, O. Allain and A. Dervieux, On Level Set modelling of Bi-fluid capillary flow, Int. J. Numer. Methods in Fluids, 53:8, 1297-1314, 2007.Google Scholar
  7. 7.
    P. Le Tallec, J. Mandel, M. Vidrascu, Balancing Domain Decomposition for Plates, Eigth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Penn State, October 1993, Contemporary Mathematics, 180, AMS, Providence, 1994, 515-524.Google Scholar
  8. 8.
    P.T. Lin, M. Sala, J.N. Shadi, R S. Tuminaro, Performance of Fully-Coupled Algebraic Multilevel Domain Decomposition Preconditioners for Incompressible Flow and Transport.Google Scholar
  9. 9.
    J. Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg., 9, 233-241, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    N. Marco, B. Koobus, A. Dervieux, An additive multilevel preconditioning method and its application to unstructured meshes, INRIA research report 2310, 1994 and Journal of Scientific Computing, 12:3, 233-251, 1997.Google Scholar
  11. 11.
    F. Nataf, H. Xiang, V. Dolean, A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps, C. R. Mathématiques, 348:21-22, 1163-1167, 2010.Google Scholar
  12. 12.
    F. Nataf, H. Xiang, V. Dolean, N. Spillane, A coarse space construction based on local Dirichlet to Neumann maps, to appear in SIAM J. Sci Comput., 2011.Google Scholar
  13. 13.
    C.R. Nastase, D. J. Mavriplis, High-order discontinuous Galerkin methods using an hp-multigrid approach, Journal of Computational Physics 213:1, 330-357, 2006.Google Scholar
  14. 14.
    R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problem, SIAM J.Numer.Anal., 24, 355-365, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’H, A deflated version of the conjugate gradient algorithm, SIAM J. Sci. Comput., 21:5, 1909-1926, 2000.Google Scholar
  16. 16.
    C. Vuik, R. Nabben A comparison of deflation and the balancing preconditionner, SIAM J. Sci. Comput., 27:5, 1742-1759, 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.INRIASophia-AntipolisFrance
  2. 2.LEMMA, Les Algorithmes (Le Thales A)BIOTFrance

Personalised recommendations