Skip to main content

Combination of LIBS and LIF

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy

Abstract

An approach to further increase the sensitivity of LIBS for the determination of traces is the combination of LIBS and laser-induced fluorescence (LIF, also called laser-excited atomic fluorescence spectrometry, LEAFS) [12.1]. Limit of detections for, e.g., heavy metals in soil according to regulatory demands are required to be significantly below 1 μg∕g, which is still difficult to achieve with LIBS only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Niemax, W. Sdorra, Optical emission spectrometry and laser-induced fluorescence of laser produced plasma plumes. Appl. Optics 29, 5000–5006 (1990)

    Article  ADS  Google Scholar 

  2. R. Measures, H. Kwong, TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation. Appl. Optics 18, 281–286 (1979)

    Article  ADS  Google Scholar 

  3. H. Kwong, R. Measures, Trace element laser microanalyzer with freedom from chemical matrix effect. Anal. Chem. 51, 428–432 (1979)

    Article  Google Scholar 

  4. I. Gornushkin, S. Baker, B. Smith, J. Winefordner, Determination of lead in metallic reference materials by laser ablation combined with laser excited atomic fluorescence. Spectrochim. Acta 52B, 1653–1662 (1997)

    ADS  Google Scholar 

  5. W. Sdorra, A. Quentmeier, K. Niemax, Basic investigations for laser microanalysis: II. Laser-induced fluorescence in laser-produced sample plumes. Microchim. Acta II 98, 201–218 (1989)

    Google Scholar 

  6. W. Sdorra, K. Niemax, Temporal and spatial distribution of analyte atoms and ions in microplasmas produced by laser ablation of solid samples. Spectrochim. Acta 45B, 917–926 (1990)

    ADS  Google Scholar 

  7. R. Neuhauser, U. Panne, R. Niessner, G. Petrucci, P. Cavalli, N. Omenetto, On-line and in situ detection of lead in ultrafine aerosols by laser-excited atomic fluorescence spectroscopy. Sensor Actuator B 39, 344–348 (1997)

    Article  Google Scholar 

  8. I. Gornushkin, J. Kim, B. Smith, S. Baker, J. Winefordner, Determination of cobalt in soil, steel and graphite using excited-state laser fluorescence induced in a laser spark. Appl. Spectrosc. 51, 1055–1059 (1997)

    Article  ADS  Google Scholar 

  9. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta B 56, 933–945 (2001)

    Article  ADS  Google Scholar 

  10. V. Sturm, L. Peter, R. Noll, Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Spectrosc. 54, 1275–1278 (2000)

    Article  ADS  Google Scholar 

  11. H. Didra, M. Baumann, Cadmium (51P1 → 53P J ) excitation transfer and 53P J intramultiplett relaxation by collisions with molecular gases. Z. Phys. D 37, 29–37 (1996)

    Article  ADS  Google Scholar 

  12. B. Smith, M. Glick, K. Spears, J. Winefordner, A comprehensive table of atomic fluorescence detection limits and experimental conditions. Appl. Spectrosc. 43, 376–414 (1989)

    Article  ADS  Google Scholar 

  13. M. Bolshov, S. Rudnev, B. Hütsch, Determination of trace amounts of cadmium by laser excited atomic fluorescence spectrometry. J. Anal. At. Spectrom. 7, 1–6 (1992)

    Article  Google Scholar 

  14. A. Zaidel, V. Prokofev, S. Raiskii, V. Slavnyi, E. Shreider, Tables of Spectral Lines (IFI–Plenum, New York, 1970)

    Google Scholar 

  15. N. Omenetto, P. Cavalli, M. Broglia, P. Qi, G. Rossi, Laser-induced single-resonance and double-resonance atomic fluorescence spectrometry in a graphite tube atomizer. J. Anal. At. Spectrom. 3, 231–235 (1988)

    Article  Google Scholar 

  16. F. Hilbk-Kortenbruck, C. Rieck, R. Noll, Multi-elemental analysis of heavy metals in soil samples using laser-based analytical techniques, Abstracts of the lecture groups “Environmental Technology and Fundamentals of Laser-aided In-situ Soil Analysis”, Int. Meeting on Chem. Eng., Environmental Protection and Biotechnology, ACHEMA 2000, Conf. Proc. 2000, DECHEMA e.V., Frankfurt a. M. 386–388 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Noll .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noll, R. (2012). Combination of LIBS and LIF. In: Laser-Induced Breakdown Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20668-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20668-9_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20667-2

  • Online ISBN: 978-3-642-20668-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics