Skip to main content

Introduction

  • Chapter
  • First Online:
Laser-Induced Breakdown Spectroscopy
  • 3463 Accesses

Abstract

Laser radiation is a high-quality form of electromagnetic energy enabling a multitude of new methods and applications, such as material processing, biomedical and communication technologies, and measuring methods. The advantages of lasers in measuring technologies are the noncontacting measurement, high flexibility, and high measuring speeds. Due to these features, laser measuring methods and applications have encountered a dynamic development during the last years. Laser measuring methods were introduced successfully in production technology, process engineering, quality assurance, environmental technology, and life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ch. Townes, The birth of the laser. Opto Laser Eur. 69, 20–30 (1999)

    ADS  Google Scholar 

  2. W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1999)

    Google Scholar 

  3. C. Weitkamp, LIDAR – Range-Resolved Optical Remote Sensing of the Atmosphere (Springer-Verlag, Berlin, 2005), ISBN 0-387-40075-3

    Google Scholar 

  4. C. Duke, H. Fischer, H.J. Kluge, H. Kremmling, Th. Kühl, E.W. Otten, Determination of isotope shift of 190Hg by on-line laser spectroscopy. Phys. Lett. 60A, 303–306 (1977)

    ADS  Google Scholar 

  5. G. Gerber, Die Momentaufnahme der Molekülspaltung. Phys. Blätter 55, 23–25 (1999)

    Google Scholar 

  6. M. Proffitt, A. Langford, Ground based differential LIDAR system for day or night measurement of ozone throughout the free troposphere. Appl. Optics 36, 2568–2585 (1997)

    Article  ADS  Google Scholar 

  7. R. Mihalcea, D. Baer, R. Hanson, A diode-laser absorption sensor system for combustion emission measurements. Meas. Sci. Technol. 9, 327–338 (1998)

    Article  ADS  Google Scholar 

  8. L. Paksy, B. Nemet, A. Lengyel, L. Kozma, J. Czekkel, Production control of metal alloys by laser spectroscopy of molten metals. Part 1. Preliminary investigation. Spectrochim. Acta B 51 279–290 (1996)

    Google Scholar 

  9. R. Noll, L. Peter, I. Mönch, V. Sturm, Automatic laser-based identification and marking of high-grade steel qualities, in Progress in Analytical Chemistry in the Steel and Metals Industries, ed. by R. Tomellni (European Communities, Luxembourg, 1999), pp. 345–351

    Google Scholar 

  10. D. Cremers, The analysis of metals at a distance using laser-induced breakdown spectroscopy. Appl. Spectrosc. 41, 572–579 (1987)

    Article  ADS  Google Scholar 

  11. R. Adrain, J. Watson, Laser microspectral analysis: a review of principles and applications. J. Phys. D Appl. Phys. 17, 1915–1940 (1984)

    Article  ADS  Google Scholar 

  12. E. Runge, R. Minck, F. Bryan, Spectrochemical analysis using a pulsed laser source. Spectrochim. Acta 20, 733–736 (1964)

    Article  ADS  Google Scholar 

  13. V. Sturm, L. Peter, R. Noll, Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet. Appl. Spectrosc. 54, 1275–1278 (2000)

    Article  ADS  Google Scholar 

  14. C. Carlhoff, Laserinduzierte Emissionsspektroskopie für die Direktanalyse von flüssigem Stahl im Konverter. Laser Optoelektr. 23, 50–52 (1991)

    Google Scholar 

  15. H. Sattler, Metallschrotte nach Analyse automatisch sortieren. Materialprüfung 35, 312–315 (1993)

    Google Scholar 

  16. P. Peuser, N. Schmitt, Dioden-gepumpte Festkörperlaser (Springer-Verlag, New York, 1995)

    Book  Google Scholar 

  17. Final report of the Brite-Euram project: study of emission spectroscopy on laser produced plasma for localised multielemental analysis in solids with surface imaging, Coordinator Saclay, France, Contract MAT 1-CT-93–0029, 1996

    Google Scholar 

  18. L. Cabalin, D. Romero, J. Baena, J. Laserna, Effect of surface topography in the characterization of stainless steel using laser-induced breakdown spectrometry. Surf. Interface Anal. 27, 805–810 (1999)

    Article  Google Scholar 

  19. W. Sdorra, A. Quentmeier, K. Niemax, Basic investigations for laser microanalysis. II. Laser-induced fluorescence in laser-produced sample plumes. Mikrochim. Acta II 2, 201–218 (1989)

    Google Scholar 

  20. R. Wamsley, T. O’Brian, K. Mitsuhashi, J. Lawler, Laser-induced fluorescence on Hg +  in Hg-Ar discharges. Appl. Phys. Lett. 59, 2947–2949 (1991)

    Article  ADS  Google Scholar 

  21. J. Bublitz, M. Dickenhausen, M. Grätz, S. Todt, W. Schade, Fiber-optic laser-induced fluorescence probe for the detection of environmental pollutants. Appl. Optics 34, 3223–3233 (1995)

    Article  ADS  Google Scholar 

  22. P. Kasal, B. Mewes, D. Brüggemann, Lasergestützte Verbrennungsdiagnostik, VDI-Broschüre zur Abschlußpräsentation von BMBF-Verbundprojekten, Düsseldorf, 1997, S. 1–13

    Google Scholar 

  23. B. Schrader (ed.), Infrared and Raman Spectroscopy (VCH Verlagsgesellschaft, Weinheim, 1995)

    Google Scholar 

  24. P. Jander, R. Noll, Automated detection of fingerprint traces of high explosives using ultraviolet Raman spectroscopy. Appl. Spectrosc. 63, 559–563 (2009)

    Article  ADS  Google Scholar 

  25. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Tunbridge Wells, 1988)

    Google Scholar 

  26. R. Clark, R. Hester (eds.), Advances in Non-linear Spectroscopy (Wiley, Chichester, 1988)

    Google Scholar 

  27. M. Seiter, M. Sigrist, On-line multicomponent trace-gas analysis with a broadly tunable pulsed difference-frequency laser spectrometer. Appl. Optics 38, 4691–4698 (1999)

    Article  ADS  Google Scholar 

  28. T. Fink, S. Büscher, R. Gäbler, Q. Yu, A. Dax, W. Urban, Laser intracavity photoacoustic spectrometer for trace gas analysis. Rev. Sci. Instrum. 67, 4000–4004 (1996)

    Article  ADS  Google Scholar 

  29. R. Noll, Terms and notations for laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 385, 214–218 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Noll .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noll, R. (2012). Introduction. In: Laser-Induced Breakdown Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20668-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20668-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20667-2

  • Online ISBN: 978-3-642-20668-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics