Skip to main content

Listing All Maximal Cliques in Large Sparse Real-World Graphs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6630)

Abstract

We implement a new algorithm for listing all maximal cliques in sparse graphs due to Eppstein, Löffler, and Strash (ISAAC 2010) and analyze its performance on a large corpus of real-world graphs. Our analysis shows that this algorithm is the first to offer a practical solution to listing all maximal cliques in large sparse graphs. All other theoretically-fast algorithms for sparse graphs have been shown to be significantly slower than the algorithm of Tomita et al. (Theoretical Computer Science, 2006) in practice. However, the algorithm of Tomita et al. uses an adjacency matrix, which requires too much space for large sparse graphs. Our new algorithm opens the door for fast analysis of large sparse graphs whose adjacency matrix will not fit into working memory.

Keywords

  • maximal clique listing
  • Bron–Kerbosch algorithm
  • sparse graphs
  • d-degenerate graphs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20662-7_31
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-20662-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Self-organized networks database, University of Notre Dame

    Google Scholar 

  2. Google programming contest (2002), http://www.google.com/programming-contest/

  3. Kdd cup (2003), http://www.cs.cornell.edu/projects/kddcup/index.html

  4. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election. In: Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005)

    Google Scholar 

  5. Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. ACM 17(4), 571–588 (1970)

    CrossRef  MATH  Google Scholar 

  6. Batagelj, V., Zaveršnik, M.: An O(m) algorithm for cores decomposition of networks (2003), http://arxiv.org/abs/cs.DS/0310049

  7. Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/

  8. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    CrossRef  MATH  Google Scholar 

  9. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques. Theor. Comput. Sci. 407(1-3), 564–568 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theor. Comput. Sci. 86(2), 243–266 (1991)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Corman, S.R., Kuhn, T., Mcphee, R.D., Dooley, K.J.: Studying complex discursive systems: Centering resonance analysis of communication. Human Communication Research 28(2), 157–206 (2002)

    Google Scholar 

  13. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  14. Gardiner, E.J., Willett, P., Artymiuk, P.J.: Graph-theoretic techniques for macromolecular docking. J. Chem. Inf. Comput. Sci. 40(2), 273–279 (2000)

    CrossRef  Google Scholar 

  15. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Goel, G., Gustedt, J.: Bounded arboricity to determine the local structure of sparse graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 159–167. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  17. Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol. Biol. 229(3), 707–721 (1993)

    CrossRef  Google Scholar 

  18. Hall, B.H., Jaffe, A.B., Trajtenberg, M.: The NBER patent citation data file: Lessons, insights and methodological tools. Tech. rep. (2001), NBER Working Paper 8498

    Google Scholar 

  19. Harary, F., Ross, I.C.: A procedure for clique detection using the group matrix. Sociometry 20(3), 205–215 (1957)

    MathSciNet  CrossRef  Google Scholar 

  20. Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Patt. An. Mach. Int. 11(11), 1168–1180 (1989)

    CrossRef  Google Scholar 

  21. Howe, D.: Foldoc: Free on-line dictionary of computing, http://foldoc.org/

  22. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13. American Mathematical Society, Boston (1996)

    MATH  Google Scholar 

  23. Kiss, G., Armstrong, C., Milroy, R., Piper, J.: An associative thesaurus of English and its computer analysis. In: Aitken, A.J., Bailey, R., Hamilton-Smith, N. (eds.) The Computer and Literary Studies, University Press, Edinburgh (1973)

    Google Scholar 

  24. Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS 2004: Proceedings of the 1st Conference on Email and Anti-Spam (2004)

    Google Scholar 

  25. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading (1993)

    MATH  Google Scholar 

  26. Koch, I.: Enumerating all connected maximal common subgraphs in two graphs. Theor. Comput. Sci. 250(1-2), 1–30 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding maximal common subtopologies in a set of protein structures. J. Comput. Biol. 3(2), 289–306 (1996)

    CrossRef  Google Scholar 

  28. Krebs, V.: http://www.orgnet.com/ (unpublished)

  29. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Phys. Rev. E 73 (2006)

    Google Scholar 

  30. Leskovec, J., Adamic, L., Adamic, B.: The dynamics of viral marketing. ACM Transactions on the Web 1(1) (2007)

    Google Scholar 

  31. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data 1(1) (2007)

    Google Scholar 

  32. Leskovec, J.: Stanford large network dataset collection, http://snap.stanford.edu/data/index.html

  33. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proc. 19th Int. Conf. on World Wide Web, WWW 2010, pp. 641–650. ACM, New York (2010)

    Google Scholar 

  34. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6(1), 29–123 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  35. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)

    CrossRef  Google Scholar 

  36. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  37. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3(1), 23–28 (1965)

    MathSciNet  CrossRef  MATH  Google Scholar 

  38. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  39. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 36104 (2006)

    MathSciNet  CrossRef  Google Scholar 

  40. Newman, M.E.J.: http://www-personal.umich.edu/~mejn/netdata/

  41. Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0. Tech. Rep. T48, Helsinki University of Technology (2003)

    Google Scholar 

  42. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: ISWC (2003)

    Google Scholar 

  43. Samudrala, R., Moult, J.: A graph-theoretic algorithm for comparative modeling of protein structure. J. Mol. Biol. 279(1), 287–302 (1998)

    CrossRef  Google Scholar 

  44. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, 535–539 (2006)

    CrossRef  Google Scholar 

  45. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  46. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    MathSciNet  CrossRef  MATH  Google Scholar 

  47. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    CrossRef  MATH  Google Scholar 

  48. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    CrossRef  Google Scholar 

  49. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, pp. 283–286. AAAI Press, Menlo Park (1997), http://www.aaai.org/Papers/KDD/1997/KDD97-060.pdf

    Google Scholar 

  50. Zomorodian, A.: The tidy set: a minimal simplicial set for computing homology of clique complexes. In: Proc. 26th ACM Symp. Computational Geometry, pp. 257–266 (2010), http://www.cs.dartmouth.edu/~afra/papers/socg10/tidy-socg.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eppstein, D., Strash, D. (2011). Listing All Maximal Cliques in Large Sparse Real-World Graphs. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20662-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20661-0

  • Online ISBN: 978-3-642-20662-7

  • eBook Packages: Computer ScienceComputer Science (R0)