Advertisement

Listing All Maximal Cliques in Large Sparse Real-World Graphs

  • David Eppstein
  • Darren Strash
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)

Abstract

We implement a new algorithm for listing all maximal cliques in sparse graphs due to Eppstein, Löffler, and Strash (ISAAC 2010) and analyze its performance on a large corpus of real-world graphs. Our analysis shows that this algorithm is the first to offer a practical solution to listing all maximal cliques in large sparse graphs. All other theoretically-fast algorithms for sparse graphs have been shown to be significantly slower than the algorithm of Tomita et al. (Theoretical Computer Science, 2006) in practice. However, the algorithm of Tomita et al. uses an adjacency matrix, which requires too much space for large sparse graphs. Our new algorithm opens the door for fast analysis of large sparse graphs whose adjacency matrix will not fit into working memory.

Keywords

maximal clique listing Bron–Kerbosch algorithm sparse graphs d-degenerate graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Self-organized networks database, University of Notre DameGoogle Scholar
  2. 2.
    Google programming contest (2002), http://www.google.com/programming-contest/
  3. 3.
  4. 4.
    Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election. In: Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem (2005)Google Scholar
  5. 5.
    Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. ACM 17(4), 571–588 (1970)CrossRefzbMATHGoogle Scholar
  6. 6.
    Batagelj, V., Zaveršnik, M.: An O(m) algorithm for cores decomposition of networks (2003), http://arxiv.org/abs/cs.DS/0310049
  7. 7.
    Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data/
  8. 8.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques. Theor. Comput. Sci. 407(1-3), 564–568 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theor. Comput. Sci. 86(2), 243–266 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Corman, S.R., Kuhn, T., Mcphee, R.D., Dooley, K.J.: Studying complex discursive systems: Centering resonance analysis of communication. Human Communication Research 28(2), 157–206 (2002)Google Scholar
  13. 13.
    Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gardiner, E.J., Willett, P., Artymiuk, P.J.: Graph-theoretic techniques for macromolecular docking. J. Chem. Inf. Comput. Sci. 40(2), 273–279 (2000)CrossRefGoogle Scholar
  15. 15.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goel, G., Gustedt, J.: Bounded arboricity to determine the local structure of sparse graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 159–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol. Biol. 229(3), 707–721 (1993)CrossRefGoogle Scholar
  18. 18.
    Hall, B.H., Jaffe, A.B., Trajtenberg, M.: The NBER patent citation data file: Lessons, insights and methodological tools. Tech. rep. (2001), NBER Working Paper 8498Google Scholar
  19. 19.
    Harary, F., Ross, I.C.: A procedure for clique detection using the group matrix. Sociometry 20(3), 205–215 (1957)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Patt. An. Mach. Int. 11(11), 1168–1180 (1989)CrossRefGoogle Scholar
  21. 21.
    Howe, D.: Foldoc: Free on-line dictionary of computing, http://foldoc.org/
  22. 22.
    Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13. American Mathematical Society, Boston (1996)zbMATHGoogle Scholar
  23. 23.
    Kiss, G., Armstrong, C., Milroy, R., Piper, J.: An associative thesaurus of English and its computer analysis. In: Aitken, A.J., Bailey, R., Hamilton-Smith, N. (eds.) The Computer and Literary Studies, University Press, Edinburgh (1973)Google Scholar
  24. 24.
    Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS 2004: Proceedings of the 1st Conference on Email and Anti-Spam (2004)Google Scholar
  25. 25.
    Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, Reading (1993)zbMATHGoogle Scholar
  26. 26.
    Koch, I.: Enumerating all connected maximal common subgraphs in two graphs. Theor. Comput. Sci. 250(1-2), 1–30 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding maximal common subtopologies in a set of protein structures. J. Comput. Biol. 3(2), 289–306 (1996)CrossRefGoogle Scholar
  28. 28.
    Krebs, V.: http://www.orgnet.com/ (unpublished)
  29. 29.
    Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Phys. Rev. E 73 (2006)Google Scholar
  30. 30.
    Leskovec, J., Adamic, L., Adamic, B.: The dynamics of viral marketing. ACM Transactions on the Web 1(1) (2007)Google Scholar
  31. 31.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data 1(1) (2007)Google Scholar
  32. 32.
    Leskovec, J.: Stanford large network dataset collection, http://snap.stanford.edu/data/index.html
  33. 33.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proc. 19th Int. Conf. on World Wide Web, WWW 2010, pp. 641–650. ACM, New York (2010)Google Scholar
  34. 34.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6(1), 29–123 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54, 396–405 (2003)CrossRefGoogle Scholar
  36. 36.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  37. 37.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3(1), 23–28 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 36104 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
  41. 41.
    Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0. Tech. Rep. T48, Helsinki University of Technology (2003)Google Scholar
  42. 42.
    Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: ISWC (2003)Google Scholar
  43. 43.
    Samudrala, R., Moult, J.: A graph-theoretic algorithm for comparative modeling of protein structure. J. Mol. Biol. 279(1), 287–302 (1998)CrossRefGoogle Scholar
  44. 44.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, 535–539 (2006)CrossRefGoogle Scholar
  45. 45.
    Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  48. 48.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)CrossRefGoogle Scholar
  49. 49.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, pp. 283–286. AAAI Press, Menlo Park (1997), http://www.aaai.org/Papers/KDD/1997/KDD97-060.pdf Google Scholar
  50. 50.
    Zomorodian, A.: The tidy set: a minimal simplicial set for computing homology of clique complexes. In: Proc. 26th ACM Symp. Computational Geometry, pp. 257–266 (2010), http://www.cs.dartmouth.edu/~afra/papers/socg10/tidy-socg.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Eppstein
    • 1
  • Darren Strash
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations