Skip to main content

A Biased Random Key Genetic Algorithm Approach for Unit Commitment Problem

  • Conference paper
Experimental Algorithms (SEA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6630))

Included in the following conference series:

Abstract

A Biased Random Key Genetic Algorithm (BRKGA) is proposed to find solutions for the unit commitment problem. In this problem, one wishes to schedule energy production on a given set of thermal generation units in order to meet energy demands at minimum cost, while satisfying a set of technological and spinning reserve constraints. In the BRKGA, solutions are encoded by using random keys, which are represented as vectors of real numbers in the interval \(\left[0,1\right]\). The GA proposed is a variant of the random key genetic algorithm, since bias is introduced in the parent selection procedure, as well as in the crossover strategy. Tests have been performed on benchmark large-scale power systems of up to 100 units for a 24 hours period. The results obtained have shown the proposed methodology to be an effective and efficient tool for finding solutions to large-scale unit commitment problems. Furthermore, from the comparisons made it can be concluded that the results produced improve upon some of the best known solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abookazemi, K., Mustafa, M.W., Ahmad, H.: Structured Genetic Algorithm Technique for Unit Commitment Problem. International Journal of Recent Trends in Engineering 1(3), 135–139 (2009)

    Google Scholar 

  2. Arroyo, J.M., Conejo, A.J.: A parallel repair genetic algorithm to solve the unit commitment problem. IEEE Transactions on Power Systems 17, 1216–1224 (2002)

    Article  Google Scholar 

  3. Bean, J.C.: Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA Journal on Computing 6(2) (1994)

    Google Scholar 

  4. Chen, Y.M., Wang, W.S.: Fast solution technique for unit commitment by particle swarm optimisation and genetic algorithm. International Journal of Energy Technology and Policy 5(4), 440–456 (2007)

    Article  Google Scholar 

  5. Cheng, C.P., Liu, C.W., Liu, G.C.: Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems 15, 707–714 (2000)

    Article  Google Scholar 

  6. Cohen, A.I., Yoshimura, M.: A Branch-and-Bound Algorithm for Unit Commitment. IEEE Transactions on Power Apparatus and Systems 102, 444–451 (1983)

    Article  Google Scholar 

  7. Dudek, G.: Unit commitment by genetic algorithm with specialized search operators. Electric Power Systems Research 72(3), 299–308 (2004)

    Article  Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  9. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. Journal of Heuristics (2010), Published online (August 27, 2010). DOI: 10.1007/s10732-010-9143-1

    Google Scholar 

  10. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  11. Jenkins, L., Purushothama, G.K.: Simulated annealing with local search-a hybrid algorithm for unit commitment. IEEE Transactions on Power Systems 18(1), 1218–1225 (2003)

    Google Scholar 

  12. Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J.: An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems 14(4), 1452–1459 (1999)

    Article  Google Scholar 

  13. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: A Genetic Algorithm Solution to the Unit Commitment Problem. IEEE Transactions on Power Systems 11, 83–92 (1996)

    Article  Google Scholar 

  14. Lee, F.N.: Short-term unit commitment-a new method. IEEE Transactions on Power Systems 3(2), 421–428 (1998)

    Article  Google Scholar 

  15. Merlin, A., Sandrin, P.: A new method for unit commitment at Electricit de France. IEEE Transactions on Power Apparatus Systems 2(3), 1218–1225 (1983)

    Article  Google Scholar 

  16. Padhy, N.P.: Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms. International Journal of Electrical Power & Energy Systems 23(8), 827–836 (2001)

    Article  Google Scholar 

  17. Raglend, I.J., Padhy, N.P.: Comparison of Practical Unit Commitment Solutions. Electric Power Components and Systems 36(8), 844–863 (2008)

    Article  Google Scholar 

  18. Rajan, C.C.A., Mohan, M.R.: An evolutionary programming-based tabu search method for solving the unit commitment problem. IEEE Transactions on Power Systems 19(1), 577–585 (2004)

    Article  Google Scholar 

  19. Rajan, C.C.A., Mohan, M.R., Manivannan, K.: Refined simulated annealing method for solving unit commitment problem. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 1, pp. 333–338. IEEE, Los Alamitos (2002)

    Google Scholar 

  20. Salam, S.: Unit commitment solution methods. Proceedings of World Academy of Science, Engineering and Technology 26, 600–605 (2007)

    Google Scholar 

  21. Senjyu, T., Yamashiro, H., Uezato, K., Funabashi, T.: A unit commitment problem by using genetic algorithm based on unit characteristic classification. IEEE Power Engineering Society Winter Meeting 1 (2002)

    Google Scholar 

  22. Simopoulos, D.N., Kavatza, S.D., Vournas, C.D.: Unit commitment by an enhanced simulated annealing algorithm. IEEE Transactions on Power Systems 21(1), 68–76 (2006)

    Article  Google Scholar 

  23. Sriyanyong, P., Song, Y.H.: Unit commitment using particle swarm optimization combined with Lagrange relaxation. In: Power Engineering Society General Meeting, pp. 2752–2759. IEEE, Los Alamitos (2005)

    Google Scholar 

  24. Swarup, K.S., Yamashiro, S.: Unit Commitment Solution Methodology Using Genetic Algorithm. IEEE Transactions on Power Systems 17, 87–91 (2002)

    Article  Google Scholar 

  25. Valenzuela, J., Smith, A.E.: A seeded memetic algorithm for large unit commitment problems. Journal of Heuristics 8(2), 173–195 (2002)

    Article  Google Scholar 

  26. Viana, A., Sousa, J.P., Matos, M.A.: Fast solutions for UC problems by a new metaheuristic approach. IEEE Electric Power Systems Research 78, 1385–1389 (2008)

    Article  Google Scholar 

  27. Xing, W., Wu, F.F.: Genetic algorithm based unit commitment with energy contracts. International Journal of Electrical Power & Energy Systems 24(5), 329–336 (2002)

    Article  Google Scholar 

  28. Zhao, B., Guo, C.X., Bai, B.R., Cao, Y.J.: An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power & Energy Systems 28(7), 482–490 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roque, L.A.C., Fontes, D.B.M.M., Fontes, F.A.C.C. (2011). A Biased Random Key Genetic Algorithm Approach for Unit Commitment Problem. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20662-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20661-0

  • Online ISBN: 978-3-642-20662-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics