Skip to main content

Influence of Pruning Devices on the Solution of Molecular Distance Geometry Problems

  • Conference paper
Experimental Algorithms (SEA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6630))

Included in the following conference series:

Abstract

The Molecular Distance Geometry Problem (MDGP) is the problem of finding the conformation of a molecule from inter-atomic distances. In some recent work, we proposed the interval Branch & Prune (iBP) algorithm for solving instances of the MDGP related to protein backbones. This algorithm is based on an artificial ordering given to the atoms of the protein backbones which allows the discretization of the problem, and hence the applicability of the iBP algorithm. This algorithm explores a discrete search domain having the structure of a tree and prunes its infeasible branches by employing suitable pruning devices. In this work, we use information derived from Nuclear Magnetic Resonance (NMR) to conceive and add new pruning devices to the iBP algorithm, and we study their influence on the performances of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 6th edn. W.H. Freeman publications, New York (2006)

    Google Scholar 

  2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acid Research 28, 235–242 (2000)

    Article  Google Scholar 

  3. Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry problem. Technical Report q-bio/0608012, arXiv (2006)

    Google Scholar 

  4. Lavor, C., Liberti, L., Maculan, N.: Molecular distance geometry problem. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 2305–2311. Springer, New York (2009)

    Google Scholar 

  5. Lavor, C., Liberti, L., Mucherino, A.: On the solution of molecular distance geometry problems with interval data. In: IEEE Conference Proceedings, International Workshop on Computational Proteomics, International Conference on Bioinformatics & Biomedicine (BIBM 2010), Hong Kong, pp. 77–82 (2010)

    Google Scholar 

  6. Lavor, C., Liberti, L., Mucherino, A.: The iBP algorithm for the discretizable molecular distance geometry problem with interval data (submitted) (Available on Optimization Online)

    Google Scholar 

  7. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein backbones by using artificial backbones of hydrogens. To appear in Journal of Global Optimization (2011); Available online from July 24, 2010

    Google Scholar 

  8. Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Discrete approaches for solving molecular distance geometry problems using NMR data. International Journal of Computational Biosciences 1(1), 88–94 (2010)

    Google Scholar 

  9. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. International Transactions in Operational Research 15, 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. International Transactions in Operational Research 18(1), 33–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mielke, S.P., Krishnan, V.V.: An evaluation of chemical shift index-based secondary structure determination in proteins: influence of random coil chemical shifts. Journal of Biomolecular NMR 30(2), 143–196 (2004)

    Article  Google Scholar 

  12. Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of the International Conference on Computational Biology, vol. 58, pp. 349–353. World Academy of Science, Engineering and Technology (2009)

    Google Scholar 

  13. Mucherino, A., Lavor, C., Liberti, L.: The Discretizable Distance Geometry Problem (submitted)

    Google Scholar 

  14. Mucherino, A., Liberti, L., Lavor, C., Maculan, N.: Comparisons between an exact and a metaheuristic algorithm for the molecular distance geometry problem. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, Montreal, pp. 333–340. ACM, New York (2009)

    Google Scholar 

  15. Nilges, M., Gronenborn, A.M., Brunger, A.T., Clore, G.M.: Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Engineering 2, 27–38 (1988)

    Article  Google Scholar 

  16. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  17. Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR 44(4), 213–236 (2009)

    Article  Google Scholar 

  18. Wishart, D.S., Sykes, B.D., Richards, F.M.: The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31(6), 1647–1698 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mucherino, A., Lavor, C., Malliavin, T., Liberti, L., Nilges, M., Maculan, N. (2011). Influence of Pruning Devices on the Solution of Molecular Distance Geometry Problems. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20662-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20661-0

  • Online ISBN: 978-3-642-20662-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics