GraphITA 2011 pp 203-208 | Cite as

Ab Initio Studies on the Hydrogenation at the Edges and Bulk of Graphene

  • S. HaldarEmail author
  • S. Bhandary
  • P. Chandrachud
  • B. S. Pujari
  • M. I. Katsnelson
  • O. Eriksson
  • D. Kanhere
  • B. Sanyal
Conference paper
Part of the Carbon Nanostructures book series (CARBON)


The opening of a band gap in graphene through chemical functionalization and realization of nanostructures, is an important issue for technological applications. Using first principles density functional theory, we show that how one can modify the electronic structure of bulk and nanoribbons of graphene by hydrogenation. It is shown that the hydrogenation of bulk graphene occurs through the formation of compact hydrogenated C islands. This also paves a unique way to realize zigzag and armchair nanoribbons at the interfaces between hydrogenated and bare C atoms and opens up the possibility to tune the band gap by controlling the width of the graphene-graphane interface. Moreover, we have studied the stability of hydrogenated edges of nanoribbons at finite temperature and pressure of hydrogen gas. It is shown that a dihydrogenated edge, which opens up a gap, can be stabilized under certain thermodynamic conditions.


Boron Nitride Generalize Gradient Approximation Graphene Nanoribbons Projector Augment Wave Method Augment Wave Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



BS acknowledges Swedish Research Council and SIDA for providing financial support and Swedish National Infrastructure for Computing for providing high performance computing.


  1. 1.
    Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007). Castro Neto, A.H., et al.: Rev. Mod. Phys. 81, 109 (2009)Google Scholar
  2. 2.
    Jafri, S.H.M. et al.: Phys. D: Appl. Phys. 43, 045404 (2010)CrossRefGoogle Scholar
  3. 3.
    Coleman, V.A. et al.: J. Phys. D: Appl. Phys. 41, 062001 (2008)CrossRefGoogle Scholar
  4. 4.
    Sanyal, B. et al.: Phys. Rev. B 79, 113409 (2009)CrossRefGoogle Scholar
  5. 5.
    Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Phys. Rev. B 75, 153401 (2007)CrossRefGoogle Scholar
  6. 6.
    Elias, D.C. et al.: Science 323, 610 (2009)CrossRefGoogle Scholar
  7. 7.
    Son, Y.W., Cohen, M.L., Louie, S.G.: Phys. Rev. Lett. 97, 216803 (2006)CrossRefGoogle Scholar
  8. 8.
    Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Phys. Rev. Lett. 98, 206805 (2007)CrossRefGoogle Scholar
  9. 9.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964). Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)Google Scholar
  10. 10.
    Kresse, G., Hafner, J.: Phys. Rev. B 47, R558 (1993). Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 11169 (1996)Google Scholar
  11. 11.
    Giannozzi, P., et al.:
  12. 12.
    Chandrachud, P. et al.: J. Phys. Condens. Matter 22, 465502 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhu, J., Bhandary, S., Sanyal, B., Ottosson, H.: J. Phys. Chem. C 115, 10264 (2011)CrossRefGoogle Scholar
  14. 14.
    Bhandary, S., Eriksson, O., Sanyal, B., Katsnelson, M.I.: Phys. Rev. B 82, 165405 (2010)CrossRefGoogle Scholar
  15. 15.
    Wassmann, T., Seitsonen, A.P., Saitta, A.M., Lazzeri, M., Mauri, F.: Phys. Rev. Lett. 101, 096402 (2008)CrossRefGoogle Scholar
  16. 16.
    Chase, M.W. Jr.: J. Phys. Chem. Ref. Data, Monog. 9, 1 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Haldar
    • 1
    Email author
  • S. Bhandary
    • 2
  • P. Chandrachud
    • 1
  • B. S. Pujari
    • 4
  • M. I. Katsnelson
    • 3
  • O. Eriksson
    • 2
  • D. Kanhere
    • 1
  • B. Sanyal
    • 2
  1. 1.Department of PhysicsUniversity of PunePuneIndia
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Radboud University Nijmegen, Institute for Molecules and MaterialsNijmegenThe Netherlands
  4. 4.National Institute of NanotechnologyAlbertaCanada

Personalised recommendations