Advertisement

GraphITA 2011 pp 195-202 | Cite as

Photonic Crystal Enhanced Absorbance of CVD Graphene

  • M. RybinEmail author
  • M. Garrigues
  • A. Pozharov
  • E. Obraztsova
  • C. Seassal
  • P. Viktorovitch
Conference paper
Part of the Carbon Nanostructures book series (CARBON)

Abstract

In the first part of this work we describe a chemical vapour deposition (CVD) method developed for graphene synthesis. Graphene samples with a controlled amount of layers have been prepared and transferred onto different substrates. The samples obtained have been characterized by several optical techniques. Optical absorption spectroscopy was used for estimation of the number of deposited graphene layers and the Raman spectra confirmed the presence of a high quality graphene monolayer. In the second part of the work we present a general concept of graphene integration with photonic crystals (PC) for enhancement of the optical absorbance of graphene. We describe a design approach, computer simulations of optical properties and a fabrication process of PC slabs. The experimental details of graphene combination with PC structures and the optical characterization of devices are described.

Keywords

Photonic Crystal Graphene Layer Resonance Wavelength Graphene Film Graphene Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work was partially supported by RFBR grant 10-02-00792, MK-2921.2010.2 project and FP7 project-IRSES No-247007. The support of Ambassade de France en Russie is also aknowledged.

References

  1. 1.
    Novoselov, K. et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  2. 2.
    Nair, R. et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)CrossRefGoogle Scholar
  3. 3.
    Xing, G. et al.: The physics of ultrafast saturable absorption in graphene. Opt. Express 18(5), 4564–4573 (2010)CrossRefGoogle Scholar
  4. 4.
    Obraztsov, P., Rybin, M. et al.: Broadband light-induced absorbance change in multilayer graphene. Nano Lett. 11(4), 1540–1545 (2011)CrossRefGoogle Scholar
  5. 5.
    Bonaccorso, F. et al.: Graphene photonics and optoelectronics. Nat. Photonics 4, 611 (2010)CrossRefGoogle Scholar
  6. 6.
    Bao, Q. et al.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009)CrossRefGoogle Scholar
  7. 7.
    Zhang, H. et al.: Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 17(20), 17630–17635 (2009)Google Scholar
  8. 8.
    Obraztsova E., Rybin M. et al.: Graphene non-linear optical elements for near and mid-infrared spectral range, Proc. of the graphene iinternational school. Cargese (France), October 11–23 (2010). http://lem.onera.fr/download/lectures/graphene/Obraztsov/Obraztsova%20E_reduit.pdf
  9. 9.
    Viktorovitch, P. et al.: Photonic crystals: basic concepts and devices. C. R. Phys. 8, 253–266 (2007)CrossRefGoogle Scholar
  10. 10.
    Viktorovitch, P. et al.: 3D harnessing of light with 2 photonic crystals. Laser Photon. Rev. 4, 401–413 (2010)CrossRefGoogle Scholar
  11. 11.
    Reina, A. et al.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)CrossRefGoogle Scholar
  12. 12.
    Rybin, M. et al.: Control of number of graphene layers grown by chemical vapor deposition. Phys. Status Solidi C 7(11-12), 2785–2788 (2010)CrossRefGoogle Scholar
  13. 13.
    Ferrari, A. et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  14. 14.
    Obraztsova, E. et al.: Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers. Phys. Stat. Sol. B 245(N10), 2055–2059 (2008)CrossRefGoogle Scholar
  15. 15.
    Ferrier, L. et al.: Slow Bloch mode confinement in 2D photonic crystals for surface operat-ing devices. Opt. Express 16(5), 3136–3145 (2008)CrossRefGoogle Scholar
  16. 16.
    Ding, Y. et al.: Use of nondegenerate resonant leaky modes to fashion diverse optical spec-tra. Opt. Express 12(9), 1885–1891 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Rybin
    • 1
    • 2
    Email author
  • M. Garrigues
    • 1
  • A. Pozharov
    • 2
  • E. Obraztsova
    • 2
  • C. Seassal
    • 1
  • P. Viktorovitch
    • 1
  1. 1.Lyon Institute of NanotechnologyEcullyFrance
  2. 2.A. M. Prokhorov General Physics InstituteMoscowRussia

Personalised recommendations