Advertisement

Technologien

  • Werner Schreiber
  • Peter Zimmermann
Chapter

Zusammenfassung

Viele Aufgaben im Lebenszyklus von Produktionsanlagen erfordern strukturierte und disziplinübergreifende Informationen. Zum Beispiel ist für den Servicetechniker neben einer Betriebs- und Servicedokumentation ein Überblick über elektrische, mechanische und automatisierungstechnische Zusammenhänge hilfreich. Die entsprechenden Daten sind heutzutage über unterschiedliche IT-Systeme verteilt, sodass manche Informationen entweder gar nicht verfügbar sind oder die Beschaffung viel Zeit in Anspruch nimmt. Die Problematik wird in diesem Kapitel behandelt, indem dargestellt wird, wie Informationen im PLM-Prozess extrahiert, strukturiert und abgefragt werden können. Dazu werden Informationen aus einzelnen Anwendersystemen in ein übergreifendes Informationsmodell integriert. Der Serviceeinsatz stellt nur ein Anwendungsfeld strukturierter und disziplinübergreifender Informationen dar, das im Projekt AVILUS adressiert wird. Weitere Beispiele sind Planungs- und Projektierungsaufgaben, der Abgleich zwischen digitaler und realer Welt und die hybride Inbetriebnahme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aduna B (2011) User Guide for Sesame. Sesame release 1.2.6. URL: http://www.openrdf.org/doc/sesame/users/index.html [Stand: 20.02.2011]Google Scholar
  2. AMR (2008) The Product Lifecycle Management Market Sizing Report, 2007–2012. URL: http://www.plm.automation.siemens.com/en_us/Images/AMR-The Product Lifecycle Management Market Sizing Report 20072012 08-07-16_tcm1023-67669.pdfGoogle Scholar
  3. Anderl R (2000) STEP. Standard for the exchange of product model data ; Eine Einführung in die Entwicklung, Implementierung und industrielle Nutzung der Normenreihe ISO 10303 (STEP). Teubner, StuttgartGoogle Scholar
  4. Bär T (2004) Durchgängige Prozesskette vom digitalen Produkt bis zur realen Fabrik. Foliensatz, Fachkongress „Digitale Fabrik“, LudwigsburgGoogle Scholar
  5. Bracht U (2002) Ansätze und Methoden der Digitalen Fabrik. Sim-VisGoogle Scholar
  6. Brecher C, Herfs W, Fayzullin K, Özdemir D, Feng J, Hamadou M, Müller A (2010a) Integration und Durchgängigkeit von Information im Produktionsmittellebenszyklus. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb, Nr 4, S 271–276Google Scholar
  7. Brecher C, Karlberger A, Herfs W (2010b) Wettbewerbsvorteile im Werkzeugmaschinenbau. Effiziente Auftragsabwicklung durch Kombination von Produktlinien-Ansatz und modellbasierter Entwicklung. In: Zeitschrift für wirtschaftlichen Fabrikbetrieb, Nr 11, S 991–996Google Scholar
  8. Brecher C, Özdemir D, Feng J, Herfs W, Fayzullin K, Hamadou M, Müller A (2010c) Integration of Software Tools with Heterogeneous Data Structures in Production Plant Lifecycles. In: 10th IFAC Workshop on Intelligent Manufacturing Systems (IMS’10): Universidade Nova de Lisboa and Polytechnic Institute of Braganca, S 55–60Google Scholar
  9. Draht R (2010) Datenaustausch in der Anlagenplanung mit AutomationML (Reihe: VDI Buch). Springer, BerlinGoogle Scholar
  10. Epple U (2003) Austausch von Anlagenplanungsdaten auf der Grundlage von Metamodellen. In: atp-Automatisierungstechnische Praxis 7 (45), S 61–70Google Scholar
  11. Experimental Media Group (2011) NodeBox. Create visual output with Python programming code [Stand: 20.02.2011]Google Scholar
  12. Genesereth M, Keller A, Duschka O (1997) Infomaster: An information integration system. In: ACM SIGMOD Record. 26. Jg, Nr 2, S 539–542CrossRefGoogle Scholar
  13. McBride B (2010) An Introduction to RDF and the Jena RDF API, URL: http://jena.sourceforge.net/tutorial/RDF_API/index.html, Version 1.25, 17. Dezember 2010Google Scholar
  14. McGuinness D, van Harmelen F (2011) OWL web ontology language overview. W3C Recommendation. URL: http://www.w3.org/TR/owl-features/ [Stand: 10.02.2011]Google Scholar
  15. Mühlhause M, Suchold N, Diedrich C (2010) Application of semantic technologies in engineering processes for manufacturing systems, In: Proceedings of the 10th IFAC Workshop on Intelligent Manufacturing SystemsGoogle Scholar
  16. Mylopoulos J (1998) Information modeling in the time of the revolution* 1. In: Information systems. 23. Jg, 3–4, S 127–155CrossRefGoogle Scholar
  17. Niles I, Pease A (2001) Towards a standard upper ontology: Proceedings of the international conference on Formal Ontology in Information Systems – Volume 2001. Ogunquit, Maine, USA: ACM, S 2–9Google Scholar
  18. Ontotext (2011) OWLIM Semantic Repository. URL: http://www.ontotext.com/owlim [Stand: 20.02.2011]Google Scholar
  19. Prud’hommeaux E, Seaborne A (2011) SPARQL Query Language for RDF. W3C Recommendation. URL: http://www.w3.org/TR/rdf-sparql-query/ [Stand: 20.02.2011]Google Scholar
  20. Siemens PLM Software (2008) Open product lifecycle data sharing using XML – White PaperGoogle Scholar
  21. TopQuadrant (2008) Semantic Web Solutions at Work in the Enterprise, White PaperGoogle Scholar
  22. TopQuadrant (2011) Getting Started with SPARQL Rules (SPIN), Version 1.2Google Scholar
  23. VDI 2221 – Richtlinie (1993) Methodik zum Entwickeln und Konstruieren technischer Systeme und ProdukteGoogle Scholar
  24. VDI – Verein deutschter Ingenieure (2008) VDI 4499-1: Digitale Fabrik – Grundlagen, GründdruckGoogle Scholar
  25. Volz R (2004) Web Ontology Reasoning with Logic Databases, Dissertation, Universität Karlsruhe, 17. Februar 2008Google Scholar
  26. Altintas Y (2000) Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design. Cambridge University Press, CambridgeGoogle Scholar
  27. AMD Inc. (2010) AMD – GPU Association – Targeting GPUs for Load Balancing in OpenGL http://developer.amd.com/sdks/wgsdk/Documents/GPU_Association_WhitePaper.pdf, Accessed 25 May 2011Google Scholar
  28. Bärz J, Abert O, Müller S (2008) Interactive Particle Tracing in Dynamic Scenes Consisting of NURBS Surfaces. In: IEEE/Eurographics Symposium on Interactive Ray Tracing, 0:39–146, Los Alamitos, CA, USAGoogle Scholar
  29. Bärz J, Hansen T, Müller S (2010) Reconstruction of Spectra Using Empirical Basis Functions. Lecture Notes in Computer Science, 6453:582–591CrossRefGoogle Scholar
  30. Bärz J Henrich N Müller S (2010) Validating Photometric and Colorimetric Consistency of Physically-Based Image Synthesis. In: CGIV 2010 – Fifth European Conference on Colour in Graphics, Imaging, and Vision (CD-ROM), 148–154, Joensuu, FinlandGoogle Scholar
  31. Berenson D, Siddharta S, Ferguson D, Kuffner J J (2009) Manipulation Planning on Constraint Manifolds. In: IEEE International Conference on Robotics and Automation, ICRA’09Google Scholar
  32. Berenson D, Siddharta S, Ferguson D, Romea A C, Kuffner J J (2009) Manipulation Planning with Workspace Goal Regions. In: IEEE International Conference on Robotics and Automation, ICRA’09Google Scholar
  33. Brecher C, Fedrowitz C et al. (2008) Durchgängiges Production Engineering – Potenziale der digitalen Fabrik. In: Brecher C, Klocke F et al (Hrsg) Wettbewerbsfaktor Produktionstechnik – Aachener Perspektiven. Apprimus, AachenGoogle Scholar
  34. Brecher C, Lohse W, Herfs W (2009) Mechatronic development of PLC software with virtual machine tools. In: Xie L et al (Hrsg) Proceedings of the 7th IEEE International Conference on Control and Automation, Eigendruck IEEEGoogle Scholar
  35. Brecher C, Karlberger A, Herfs W (2010) Wettbewerbsvorteile im Werkzeugmaschinenbau – Effiziente Auftragsabwicklung durch Kombination von Produktlinien-Ansatz und modellbasierter Entwicklung. Zeitschrift für wirtschaftlichen Fabrikbetrieb 11/2010:991–996Google Scholar
  36. Cook R, Porter T, Carpenter L (1984) Distributed Ray Tracing. ACM SIGGRAPH Computer Graphics, 18:137–145CrossRefGoogle Scholar
  37. Debevec P, Malik J (1997) Recovering High Dynamic Range Radiance Maps from Photographs. Proceedings of the 24th annual conference on Computer graphics and interactive techniques (SIGGRAPH), 369–378Google Scholar
  38. Dittmar R, Pfeiffer B-M (2004) Modellbasierte prädiktive Regelung, Oldenburg Wissenschaftsverlag, MünchenGoogle Scholar
  39. Dreyer D (2007) Kontrastschwellensimulation für Sichtbarkeitsuntersuchungen an Displays. Dissertation, Technische Universität MünchenGoogle Scholar
  40. Fattal R, Lischinski D, Werman M (2002) Gradient Domain High Dynamic Range Compression. ACM SIGGRAPH Computer GraphicsGoogle Scholar
  41. Ferwerda J (1998) Visual Models for Realistic Image Synthesis. Dissertation, Cornell Univeristy, IthakaGoogle Scholar
  42. Frank P M (1994) Diagnoseverfahren in der Automatisierungstechnik. at-Automatisierungstechnik 42, Oldenburg Wissenschaftsverlag, MünchenGoogle Scholar
  43. Hansen T (2010) Rekonstruktion von Spektren aus RGB-Daten. Diplomarbeit, Universität Koblenz-LandauGoogle Scholar
  44. Hermes J, Henrich N, Grosch T, Müller S (2010) Global Illumination using Parallel Global Ray-Bundles. 15th International Workshop on Vision, Modeling and Visualization, GermanyGoogle Scholar
  45. Holloway L E (1996) On-line fault monitoring of a class of hybrid systems using templates with dynamic time scaling. In: (Alur R, Henzinger T A, Sontag E D Hrsg.): Lecture Notes in Computer Science. Springer, Berlin, S 258–269Google Scholar
  46. Hotz I (2007) Simulationsbasierte Frühwarnsysteme zur Unterstützung der operativen Produktionssteuerung und –planung in der Automobilindustrie, Dissertation, Fakultät für Informatik, Otto-von-Guericke Universität MagdeburgGoogle Scholar
  47. Isermann R (2005) Model-based Fault Detection and Diagnosis – Status and Applications. Annual Review in Control 29, S 71–85CrossRefGoogle Scholar
  48. Kaever M (2007) Trends in der Automatisierungstechnik, LüneburgGoogle Scholar
  49. Kajiya J (1986) The rendering equation. ACM SIGGRAPH Computer Graphics, 20(4):143–150CrossRefGoogle Scholar
  50. Kavraki L E; Svestka P; Latombe J C; Overmars M H (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation 12 (4):566–580CrossRefGoogle Scholar
  51. Knauer E, Bärz J, Müller S (2010) A Hybrid Approach to Interactive Global Illumination and Soft Shadows. The Visual Computer, 26(6–8):565–574CrossRefGoogle Scholar
  52. Koch J Henrich N, Müller S (2010) Spatial Color Confidence for Physically Based Rendering Settings on LC Displays. International Conference on Computer Graphics Theory and Applications 2010Google Scholar
  53. Landis H (2002) Production-Ready Global Illumination. ACM SIGGRAPH Course Notes, Course 16Google Scholar
  54. Lang M (2006) Betreibersimulation Werk Leipzig – Ein webbasiertes und online gekoppeltes Prognosetool zur Unterstützung der Produktionssteuerung, Vortrag BMW AGGoogle Scholar
  55. Langs A, Bärz J (2010) Confidence in Tone Mapping Applying a User-Driven Operator. In 18th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2010 – Communication Papers Proceedings, 47–54, Plzen, Czech RepublicGoogle Scholar
  56. LaValle S M (1998) Rapidly-Exploring Random Trees: A New Tool for Path Planning. Tech. Rep. TR: 98–11 Iowa State UniversityGoogle Scholar
  57. NVIDIA Corporation (2011) NVIDIA SceniX Details http://developer.nvidia.com/object/scenix-details.htmlGoogle Scholar
  58. NVIDIA Corporation (2006) OpenGL GPU Affinity Extension http://developer.download.nvidia.com/opengl/specs/WGL_nv_gpu_affinity.txtGoogle Scholar
  59. Parker S, Bigler J, Dietrich A et al. (2010) OptiX: A General Purpose Ray Tracing Engine. ACM Trans. Graph., 29(4):1–13CrossRefGoogle Scholar
  60. PQP – A Proximity Query Package, GAMMA research group at the University of North Carolina at Chapel Hill (UNC). http://gamma.cs.unc.edu/SSV/Google Scholar
  61. Sauer O (2000) Optimierung von Fertigungsprozessen in der Elektronikproduktion durch prozessbegleitende Simulation. In: Modellierung der Produktion, Abschlusskolloquium zum DFG Schwerpunktprogramm, Hannover. Hannover: Institut für FabrikanlagenGoogle Scholar
  62. Scheurer C, Zimmermann U E (2011) Path Planning Method for Palletizing Tasks using Worspace Cell Decomposition. In: IEEE International Conference on Robotics and Automation, ICRA’11, ShanghaiGoogle Scholar
  63. Schuh G et al (2005) Studie Intelligent Maintenance. Potenziale zustandsorientierter Instandhaltung, AachenGoogle Scholar
  64. Schullerus G et al. (2004) Diagnose zeitbewerteter ereignisdiskreter Systeme (Diagnosis of Timed Discrete Event Systems). at – Automatisierungstechnik, 52,; S. 164–173CrossRefGoogle Scholar
  65. Schwarzer F, Saha M, Latombe J C (2004) Exact Collision Checking of Robot Paths. In Algorithmic Foundations of Robotics V, J.D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson (eds.), Springer Tracts in Advanced Robotics, Springer, 25–41Google Scholar
  66. Thiedemann S, Henrich N, Grosch T, Müller S (2011) Voxel-based Global Illumination. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (i3D 2011), San Francisco, USAGoogle Scholar
  67. Trenkel S, Weller R, Zachmann G (2007) A Benchmarking Suite for Static Collision Detection Algorithms. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), PlzenGoogle Scholar
  68. VDI 3633-1 (2000) Simulation von Logistik-, Materialfluss- und Produktionssystemen – Blatt 1: Grundlagen. VDI-Richtlinie. Beuth, BerlinGoogle Scholar
  69. Vogel O et al. (2005) Software-Architektur. Grundlagen – Konzepte – Praxis, Spektrum Akademischer VerlagGoogle Scholar
  70. Wald I, Dietrich A, Benthin C et al. (2006) Applying Ray Tracing for Virtual Reality and Industrial Design. Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, 177–185Google Scholar
  71. Wannagat A (2010) Entwicklung und Evaluation agentenorientierter Automatisierungssysteme zur Erhöhung der Flexibilität und Zuverlässigkeit von Produktionsanlagen. Sierke, GöttingenGoogle Scholar
  72. Weck M, Brecher C (2006) Werkzeugmaschinen – Messtechnische Untersuchung und Beurteilung, dynamische Stabilität. 7 Aufl, Springer, BerlinGoogle Scholar
  73. Weigert G, Werner S, Kellner M (2002) Fertigungsplanung durch prozessbegleitende Simulation Einleitung. In: Druyen J, Noche B (Hrsg.) Anwendungen der Simulationstechnik in Produktion und Logistik. Tagungsband zur 10. ASIM-Fachtagung. SCS Publ. House, Erlangen [u.a.], S 42–51Google Scholar
  74. Weller R, Mainzer D, Zachmann G, Sagardia, Hulin, Preusche (2010) A Benchmarking Suite for 6-DOF Real Time Collision Response Algorithms. 17th ACM Symposium on Virtual Reality Software and Technology 2010 (VRST’ 2010)Google Scholar
  75. Weller R, Zachmann G (2009a) Inner Sphere Trees for Proximity and Penetration Queries. 2009 Robotics: Science and Systems Conference (RSS), Seattle, USA, 28 June – 01 July 2009Google Scholar
  76. Weller R, Zachmann G (2009b) A Unified Approach for Physically-Based Simulations and Haptic Rendering. ACM Siggraph Game Papers, New Orleans, USA, 03 – 07 August 2009Google Scholar
  77. Weller R, Zachmann G (2009c) Inner Stable 6-DOF Haptic Rendering with Inner Sphere Trees. Proceedings of International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), San Diego, USA, 30 August – 02 September 2009. Virtual Environments and Systems – 2009 Best Paper AwardGoogle Scholar
  78. Weller R, Zachmann G (2010) ProtoSphere: A GPU-Assisted Prototype Guided Sphere Packing Algorithm for Arbitrary Objects. Siggraph Asia Technical SketchesGoogle Scholar
  79. Weller R, Zachmann G (2011a) Inner Sphere Trees and Their Application to Collision Detection. Virtual Realities, SpringerGoogle Scholar
  80. Weller R, Zachmann G (2011b) 3-DOF vs. 6-DOF – Playful Evaluation of Complex Haptic Interactions. IEEE International Conference on Consumer Electronics (ICCE) 2011Google Scholar
  81. Whitted T (1980) An Improved Illumination Model for Shaded Display. Communications of the ACM, 23(6):343–349CrossRefGoogle Scholar
  82. Witczak M (2007) Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems. Springer, New YorkGoogle Scholar
  83. Zachmann G (2008) Collision Detection as a Fundamental Technology in VR Based Product Engineering. In: Talaba & Amditis: Product Engineering – Tools and Methods Based on Virtual Reality, Springer, S 195–230Google Scholar
  84. Davison AJ, Reid ID, Molton N D, Stasse O (2007) MonoSLAM: Real- time single camera SLAM. PAMI, 26(6):1052–1067CrossRefGoogle Scholar
  85. Fiala M (2010) Designing highly reliable fiducial markers. PAMI, 32(7):1317–1324MathSciNetCrossRefGoogle Scholar
  86. Huber M, Pustka D, Keitler P, Echtler F, Klinker G (2007) A System Architecture for Ubiquitous Tracking Environments. ISMAR 2007Google Scholar
  87. Kato H, Billinghurst M (1999) Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In: Proceedings of the 2nd International Workshop on Augmented Reality (IWAR 99), San Francisco, USA, October 1999Google Scholar
  88. Keitler P, Becker B, Klinker G (2010) Management of Tracking for Industrial AR Setups. ISMAR 2010, Seoul, Korea, October 13 – 16, 2010Google Scholar
  89. Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspaces. In: ISMAR 2007Google Scholar
  90. Lieberknecht S, Benhimane S, Meier P, Navab N (2009) A Dataset and Evaluation Methodology for Template-based Tracking Algorithms. In: ISMAR, pages 19 – 22Google Scholar
  91. Lieberknecht S, Benhimane S, Meier P, Navab N (2011) Benchmarking Template-based Tracking Algorithms, IJVR (International Journal of Virtual Reality)Google Scholar
  92. Lieberknecht S, Stierstorfer Q, Kuschk G, Ulbricht D, Langer M Benhimane S (2011), Handbook of Augmented Reality: Technologies and Applications, Borko Furht (editor), Springer, to appear in 2011Google Scholar
  93. Pustka D, Willneff J, Wenisch O, Lükewille P, Achatz K, Keitler P, Klinker G (2010) Determining the Point of Minimum Error for 3DOF Pose Uncertainty Representation. ISMAR 2010, Seoul, Korea, October. 13 – 16, 2010Google Scholar
  94. Schwerdtfeger B (2010) AVILUS tracking contest 2010 – Abschlussbericht. Technical report, TU MünchenGoogle Scholar
  95. Schwerdtfeger B, Pustka D, Hofhauser A, Klinker G (2008) Using Laser Projectors for Augmented Reality. ACM Symp. On Virtual Reality, Software and Technology (VRST)Google Scholar
  96. Waechter C, Huber M, Keitler P, Schlegel M, Pustka D, Klinker G (2010) A Multi-Sensor Platform for Wide-area Tracking. ISMAR 2010 (Poster)Google Scholar
  97. Zimmerman K, Matas J, Svoboda T (2009) Tracking by an optimal sequence of linear predictors. PAMI, 31(4):677–692, April 2009CrossRefGoogle Scholar
  98. Advanced Realtime Tracking GmbH (2011) Produktseite http://artracking.de/Fingertracking.54.0.htmlGoogle Scholar
  99. Aumüller A, Lang R, Rainer D, Schulze-Döbold J, Werner A, Wolf P, Wössner U (2008) COVISE Online Documentation http://vis.uni-koeln.de/covise/doc/html/usersguide/cover/cover.html. Accessed 26 February 2011Google Scholar
  100. Bowman D A, Kruijff E, LaViola J J, Poupyrev I (2004) 3D User Interfaces: Theory and Practice. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.Google Scholar
  101. Kaushik D, Borst C (2010) An Evaluation of Menu Properties and Pointing Techniques in a Projection-Based VR Environment. IEEE 3D User Interfaces 2010 47–50Google Scholar
  102. Mock S (2009) Approximativ volumenerhaltende Deformation eines 3D-Handmodells mittels innerer Kugeln. Diplomarbeit TU ClausthalGoogle Scholar
  103. Weller R, Zachmann G (2009) Inner Sphere Trees for Proximity and Penetration Queries. 2009 Robotics: Science and Systems Conference (RSS). Seattle, USAGoogle Scholar
  104. Weller R, Zachmann G (2009) A Unified Approach for Physically-Based Simulations and Haptic Rendering. ACM Siggraph Game Papers. New OrleansGoogle Scholar
  105. Weller R, Zachmann G (2009) Inner Stable 6-DOF Haptic Rendering with Inner Sphere Trees. Proceedings of International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE). San Diego, USAGoogle Scholar
  106. Weller R, Zachmann G (2011) Inner Sphere Trees and Their Application to Collision Detection. Virtual Realities SpringerGoogle Scholar
  107. Wingrave C (2009) 3DUI Flavors Beyond Vanilla. Software Engineering and Architectures for Realtime Interactive Systems (SEARIS), Workshop at IEEE VRGoogle Scholar
  108. Dachselt R, Hübner A (2006) A Survey and Taxonomy of 3D Menu Techniques. Proceedings of the 12th Eurographics Symposium on Virtual Environments (EGVE’06)Google Scholar
  109. Zachmann G (2008) Technologies for Making the Hand Usable as an Interaction Device in VR In: Brunnett. Coquillart & Welch: „Dagstuhl Seminar Virtual Realties“. Dagstuhl: SpringerGoogle Scholar
  110. Bunnun P, Mayol-Cuevas W (2008) Outlinar: an assisted interactive model building system with reduced computational effort. 7th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’08)Google Scholar
  111. Computational Geometric Algorithms Library (CGAL) http://www.cgal.orgGoogle Scholar
  112. Davison A, Reid I, Molton N, Stasse O (2007) Monoslam: Real-time single camera slam. IEEE Pattern Analysis and Machine Intelligence (PAMI). 26(6):1052–1067CrossRefGoogle Scholar
  113. Efros A, Leung T (1999) Texture synthesis by non-parametric sampling. International Conference on Computer Vision (ICCV)Google Scholar
  114. FastRBF Interpolation Toolbox http://www.farfieldtechnology.com/products/toolbox.Google Scholar
  115. Franco J, Boyer E (2003) Exact polyhedral visual hulls. British Machine Vision ConferenceGoogle Scholar
  116. Georgel P, Schroeder P, Benhimane S, Hinterstoisser S, Appel M, Navab N (2007) An Industrial Augmented Reality Solution For Discrepancy Check. 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07)Google Scholar
  117. Ilie A, Welch G (2005) Ensuring color consistency across Multiple Cameras. International Conference on Computer Vision (ICCV) (Kinect) http://www.xbox.com/de-de/kinectGoogle Scholar
  118. Klein G, Murray D (2007) Parallel tracking and mapping for small ar workspaces. 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07)Google Scholar
  119. Langer M, BenHimane S (2010) An Interactive Vison-based 3D Reconstruction Workflow for Industrial AR Applications. 9th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’10): Workshop: Augmented Reality Super ModelsGoogle Scholar
  120. Laurentini A (1994) The visual hull concept for silhouette-based image understanding. IEEE Pattern Analysis and Machine Intelligence (PAMI). 16(2):150–162CrossRefGoogle Scholar
  121. Lazebnik S, Furukawa Y, Ponce J (2007) Projective visual hulls. International Journal of Computer Vision (IJCV). 74(2):137–165CrossRefGoogle Scholar
  122. Lourakis M, Argyros A (2009) SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Transactions on Mathematical Software. 36(1):1–30 (Unifeye) AR-System Unifeye der metaio GmbH. http://www.metaio.com/softwareMathSciNetCrossRefGoogle Scholar
  123. Navab N, Craft N, Bauer S, Bani-Hashemi A (1998) Cylicon: software package for 3d reconstruction of industrial pipelines. IEEE Workshop on Applications of Computer VisionGoogle Scholar
  124. Newcombe R, Davison A (2010) Live dense reconstruction with a single moving camera. IEEE Computer Vision and Pattern Recognition (CVPR)Google Scholar
  125. Pan Q, Reitmayr G, Drummond T (2009) Interactive model reconstruction with user guidance. 8th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’09) (PrimeSense) http://www.primesense.com/. (Qtpfsgui) http://qtpfsgui.sourceforge.net/.Google Scholar
  126. Slabaugh G, Schafer R, Levingston M (2001) Optimal ray intersection for computing 3d points from n-view correspondences. Technical reportGoogle Scholar
  127. Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. IEEE Computer Vision and Pattern Recognition (CVPR)Google Scholar
  128. Simon G (2009) Immersive image-based modeling of polyhedral scenes. 8th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’09)Google Scholar
  129. Szeliski R (1993) Rapid octree construction from image sequences. Computer Vision, Graphics and Image Processing: Image Understanding. 58(1):23–32CrossRefGoogle Scholar
  130. van den Hengel A, Dick A, Thormählen T, Ward B, Torr B (2007) Videotrace: rapid interactive scene modelling from video. ACM Transactions on GraphicsGoogle Scholar
  131. Webel S, Becker M, Stricker D, Wuest H (2007) Identifying differences between cad and physical mock-ups using ar. 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.c/o Volkswagen AGWolfsburgDeutschland
  2. 2.metaio GmbHGifhornDeutschland

Personalised recommendations