Skip to main content

Citizen Science 2.0: Data Management Principles to Harness the Power of the Crowd

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 6629)

Abstract

Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described.

Keywords

  • design
  • citizen science
  • management
  • database design
  • conceptual modeling
  • data quality

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20633-7_34
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-20633-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silvertown, J.: A new dawn for citizen science. Trends in Ecology and Evolution 24, 467–471 (2009)

    CrossRef  Google Scholar 

  2. Goodchild, M.: Citizens as sensors: the world of volunteered geography. GeoJournal 69, 211–221 (2007)

    CrossRef  Google Scholar 

  3. Hand, E.: People power. Nature 466, 685–687 (2010)

    CrossRef  Google Scholar 

  4. Foster-Smith, J., Evans, S.M.: The value of marine ecological data collected by volunteers. Biological Conservation 113, 199–213 (2003)

    CrossRef  Google Scholar 

  5. Flanagin, A., Metzger, M.: The credibility of volunteered geographic information. GeoJournal 72, 137–148 (2008)

    CrossRef  Google Scholar 

  6. Wiersma, Y.F.: Birding 2.0: citizen science and effective monitoring in the Web 2.0 world. Avian Conservation and Ecology 5, 13 (2010)

    CrossRef  Google Scholar 

  7. Coleman, D.J., Georgiadou, Y., Labonte, J.: Volunteered geographic information: The nature and motivation of producers. International Journal of Spatial Data Infrastructures Research 4, 332–358 (2009)

    Google Scholar 

  8. Parsons, J., Wand, Y.: Emancipating instances from the tyranny of classes in information modeling. ACM Transactions on Database Systems 25, 228 (2000)

    CrossRef  Google Scholar 

  9. Parsons, J., Lukyanenko, R., Wiersma, Y.: Easier citizen science is better. Nature 471, 37 (2011)

    CrossRef  Google Scholar 

  10. Dickinson, J.L., Zuckerberg, B., Bonter, D.N.: Citizen science as an ecological research tool: challenges and benefits. Annual Review of Ecology, Evolution, and Systematics 41, 112–149 (2010)

    CrossRef  Google Scholar 

  11. Aaron, W.E.G., Tudor, M.T., Haegen, W.M.V.: The Reliability of Citizen Science: A Case Study of Oregon White Oak Stand Surveys. Wildlife Society Bulletin 34, 1425–1429 (2006)

    CrossRef  Google Scholar 

  12. Hamel, N.J., Burger, A.E., Charleton, K., Davidson, P., Lee, S., Bertram, D.F., Parrish, J.K.: Bycatch and beached birds: Assessing mortality impacts in coastal net fisheries using marine bird strandings. Marine Ornithology (2009)

    Google Scholar 

  13. Bishr, M., Mantelas, L.: A trust and reputation model for filtering and classifying knowledge about urban growth. GeoJournal 72, 229–237 (2008)

    CrossRef  Google Scholar 

  14. Silvertown, J.: Taxonomy: include social networking. Nature 467, 788–788 (2010)

    CrossRef  Google Scholar 

  15. Komiak, S.Y.X., Benbasat, I.: The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Quarterly 30, 941–960 (2006)

    Google Scholar 

  16. Gefen, D., Karahanna, E., Straub, D.W.: Trust and TAM in online shopping: An integrated model. MIS Quarterly 27, 51–90 (2003)

    Google Scholar 

  17. Palvia, P.: The role of trust in e-commerce relational exchange: A unified model. Information & Management 46, 213–220 (2009)

    CrossRef  Google Scholar 

  18. Alabri, A., Hunter, J.: Enhancing the quality and trust of citizen science data. In: IEEE eScience 2010, Brisbane, Australia (2010)

    Google Scholar 

  19. Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D., Kelling, S.: eBird: A citizen-based bird observation network in the biological sciences. Biological Conservation 142, 2282–2292 (2009)

    CrossRef  Google Scholar 

  20. Parsons, J., Su, J.: Analysis of data structures to support the instance-based data model. In: International Conference on Design Science Research in Information Systems and Technology (DESRIST), pp. 107–130 (2006)

    Google Scholar 

  21. Parsons, J., Wand, Y.: A question of class. Nature 455, 1040–1041 (2008)

    CrossRef  Google Scholar 

  22. Allen, B.R., Boynton, A.C.: Information architecture: In search of efficient flexibility. MIS Quarterly 15, 435–445 (1991)

    CrossRef  Google Scholar 

  23. Agarwal, R., Angst, C.M.: Technology-Enabled Transformations in U.S. Health Care: Early Findings on Personal Health Records and Individual Use. In: Galletta, D., Zhang, P. (eds.) Human-Computer Interaction and Management Information Systems: Applications. M.E. Sharpe, Inc., Armonk (2006)

    Google Scholar 

  24. Nicolaou, A.I., McKnight, D.H.: Perceived information quality in data exchanges: Effects on risk, trust, and intention to use. Information Systems Research 17, 332–351 (2006)

    CrossRef  Google Scholar 

  25. Grill-Spector, K., Kanwisher, N.: Visual recognition. Psychological Science 16, 152–160 (2005)

    CrossRef  Google Scholar 

  26. Bunge, M.A.: Treatise on Basic Philosophy: The furniture of the world. Reidel, Dordrecht (1977)

    CrossRef  MATH  Google Scholar 

  27. Wand, Y., Weber, R.: An ontological model of an information system. IEEE Transactions on Software Engineering 16, 1282–1292 (1990)

    CrossRef  Google Scholar 

  28. Bowers, J.S., Jones, K.W.: Detecting objects is easier than categorizing them. Quarterly Journal of Experimental Psychology 61, 552–557 (2008)

    CrossRef  Google Scholar 

  29. Wand, Y., Monarchi, D.E., Parsons, J., Woo, C.C.: Theoretical foundations for conceptual modeling in information systems development. Decision Support Systems 15, 285–304 (1995)

    CrossRef  Google Scholar 

  30. Raccoon, L.S.B., Puppydog, P.O.P.: A middle-out concept of hierarchy (or the problem of feeding the animals). SIGSOFT Softw. Eng. Notes 23, 111–119 (1998)

    CrossRef  Google Scholar 

  31. Young, J.J., Williams, P.F.: Sorting and comparing: Standard-setting and “ethical” categories. Critical Perspectives on Accounting 21, 509–521 (2010)

    CrossRef  Google Scholar 

  32. Lakoff, G.: Women, fire, and dangerous things: what categories reveal about the mind. University of Chicago Press, Chicago (1987)

    CrossRef  Google Scholar 

  33. Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M., Boyesbraem, P.: Basic objects in natural categories. Cognitive Psychology 8, 382–439 (1976)

    CrossRef  Google Scholar 

  34. Murphy, G.L., Wisniewski, E.J.: Categorizing objects in isolation and in scenes - What a superordinate is good for. Journal of Experimental Psychology: Learning 15, 572–586 (1989)

    Google Scholar 

  35. Rorissa, A.: User-generated descriptions of individual images versus labels of groups of images: A comparison using basic level theory. Information Processing & Management 44, 1741–1753 (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lukyanenko, R., Parsons, J., Wiersma, Y. (2011). Citizen Science 2.0: Data Management Principles to Harness the Power of the Crowd. In: Jain, H., Sinha, A.P., Vitharana, P. (eds) Service-Oriented Perspectives in Design Science Research. DESRIST 2011. Lecture Notes in Computer Science, vol 6629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20633-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20633-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20632-0

  • Online ISBN: 978-3-642-20633-7

  • eBook Packages: Computer ScienceComputer Science (R0)