Advertisement

Raman Spectroscopy for Characterization of Graphene

  • Duhee Yoon
  • Hyeonsik Cheong

Abstract

Raman spectroscopy is one of the most widely used characterization tool in the study of graphene, a two-dimensional hexagonal crystal of carbon atoms. Owing to the resonant nature of the light scattering process, fairly strong signals are detected in spite of the fact that only one monolayer of atoms is probed. In graphene research, Raman spectroscopy is used not only as an indispensible characterization tool to identify the number of layers, but also as a probe to investigate the mechanical, electrical, and optical properties. Here, important recent progress in Raman spectroscopic characterization of graphene is reviewed.

Keywords

Raman Spectroscopy Graphene Layer Electronic Band Structure Polarization Dependence Graphene Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  2. 2.
    Katsnelson MI (2007) Grpahene: carbon in two dimensions. Mater Today 10:20–27CrossRefGoogle Scholar
  3. 3.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  4. 4.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  5. 5.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  6. 6.
    Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634CrossRefGoogle Scholar
  7. 7.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Dubonos SV, Girgorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  8. 8.
    Trevisanutto PE, Giorgetti C, Reining L, Ladisa M, Olevano V (2008) Ab Initio GW many–body effects in graphene. Phys Rev Lett 101:226405CrossRefGoogle Scholar
  9. 9.
    Kohn W (1956) Image of the Fermi surface in the vibration spectrum of a metal. Phys Rev Lett 2:393–394CrossRefGoogle Scholar
  10. 10.
    Piscanec S, Lazzeri M, Mauri F, Ferrari AC, Robertson J (2004) Kohn anomalies and electron–phonon interactions in graphite. Phys Rev Lett 93:185503CrossRefGoogle Scholar
  11. 11.
    Maultzsch J, Reich S, Thomsen C, Requardt H, Ordejón P (2004) Phonon dispersion in graphite. Phys Rev Lett 92:075501CrossRefGoogle Scholar
  12. 12.
    Charlier J-C, Eklund PC, Zhu J, Ferrari AC (2008) Electron and phonon properties of graphene: their relationship with carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes, vol 111, Topics in applied physics. Springer, Berlin/Heidelberg, pp 673–709CrossRefGoogle Scholar
  13. 13.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758CrossRefGoogle Scholar
  14. 14.
    Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87CrossRefGoogle Scholar
  15. 15.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291CrossRefGoogle Scholar
  16. 16.
    Lucchese MM, Stavale F, Martins Ferreira EH, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A (2010) Quantifying ion–induced defects and Raman relaxation length in graphene. Carbon 48:1592–1597CrossRefGoogle Scholar
  17. 17.
    Yoon D, Moon H, Son Y–W, Samsonidze G, Park BH, Kim JB, Lee Y, Cheong H (2008) Strong polarization dependence of double–resonant Raman intensities in graphene. Nano Lett 8:4270–4274CrossRefGoogle Scholar
  18. 18.
    Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C, Marzari N, Novoselov KS, Geim AK, Ferrari AC (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys Rev B 79:205433CrossRefGoogle Scholar
  19. 19.
    Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J (2009) Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc Natl Acad Sci USA 106:7304–7308CrossRefGoogle Scholar
  20. 20.
    Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694-2697CrossRefGoogle Scholar
  21. 21.
    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRefGoogle Scholar
  22. 22.
    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673CrossRefGoogle Scholar
  23. 23.
    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved Raman spectroscopy of single– and few–layer graphene. Nano Lett 7:238–242CrossRefGoogle Scholar
  24. 24.
    Yoon D, Moon H, Cheong H, Choi JS, Choi JA, Park BH (2009) Variations in the Raman spectrum as a function of the number of graphene layers. J Korean Phys Soc 55:1299–1303CrossRefGoogle Scholar
  25. 25.
    Mafra DL, Samsonidze G, Malard LM, Elias DC, Brant JC, Plentz F, Alves ES, Pimenta MA (2007) Deterination of LA and TO phonon dispersion relations of grapehene near the Dirac point by double resonance Raman scattering. Phys Rev B 76:233407CrossRefGoogle Scholar
  26. 26.
    Shimada T, Sugai T, Fantini C, Souza M, Cançado LG, Jorio A, Pimenta MA, Saito R, Grüneis A, Dresselhaus G, Dresselhaus MS, Ohno Y, Mizutani T, Shinohara H (2005) Origin of the 2450 cm−1 Raman bands in HOPG, single–wall and double–wall carbon nanotubes. Carbon 43:1049–1054CrossRefGoogle Scholar
  27. 27.
    Malard LM, Nilsson J, Elias DC, Brant JC, Plentz F, Alves ES, Castro Neto AH, Pimenta MA (2007) Probing the electronic structure of bilayer graphene by Raman scattering. Phys Rev B 76:201401(R)Google Scholar
  28. 28.
    Latil S, Henrard L (2006) Charge carrier in few-layer graphene films. Phys Rev Lett 97:036803CrossRefGoogle Scholar
  29. 29.
    Saito R, Dresselhaus G, Dresselhaus MS (1993) Electronic structure of double–layer graphene tubules. J Appl Phys 73:494–500CrossRefGoogle Scholar
  30. 30.
    Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK (2007) Making graphene visible. Appl Phys Lett 91:063124CrossRefGoogle Scholar
  31. 31.
    Yoon D, Moon H, Son Y-W, Choi JS, Park BH, Cha YH, Kim YD, Cheong H (2009) Interference effect on Raman spectrum of graphene on SiO2/Si. Phys Rev B 80:125422CrossRefGoogle Scholar
  32. 32.
    Gierz I, Riedl C, Starke U, Ast CR, Kern K (2008) Atomic hole doping graphene. Nano Lett 8:4603–4607CrossRefGoogle Scholar
  33. 33.
    Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N–doping of graphene through electrothermal reactions with ammonia. Science 324:768–771CrossRefGoogle Scholar
  34. 34.
    Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin Y-M, Tulevski GS, Tsang JC, Avouris Ph (2009) Chemical doping and electron–hole asymmetry in graphene devices. Nano Lett 9:388–392CrossRefGoogle Scholar
  35. 35.
    Yan J, Zhang Y, Kim P, Pinczuk A (2007) Electric field effect tuning of electron–phonon coupling in graphene. Phys Rev Lett 98:166802CrossRefGoogle Scholar
  36. 36.
    Pisana S, Lazzeri M, Casiraghi C, Novoselov KS, Geim AK, Ferrari AC, Mauri F (2007) Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat Mater 6:198–201CrossRefGoogle Scholar
  37. 37.
    Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top–gated graphene transistor. Nat Nanotechnol 3:210–215CrossRefGoogle Scholar
  38. 38.
    Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:233108CrossRefGoogle Scholar
  39. 39.
    Mounet N, Marzari N (2005) First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys Rev B 71:205214CrossRefGoogle Scholar
  40. 40.
    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566CrossRefGoogle Scholar
  41. 41.
    Bonini N, Lazzeri M, Marzari N, Mauri F (2007) Phonon anharmonicities in graphite and graphene. Phys Rev Lett 99:176802CrossRefGoogle Scholar
  42. 42.
    Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett 7:2645–2649CrossRefGoogle Scholar
  43. 43.
    Allen MJ, Fowler JD, Tung VC, Yang Y, Weiller BH, Kaner RB (2008) Temperature dependent Raman spectroscopy of chemically derived graphene. Appl Phys Lett 93:193119CrossRefGoogle Scholar
  44. 44.
    Chae D–H, Krauss B, von Klitzing K, Smet JH (2010) Hot phonons in an electrically biased graphene constriction. Nano Lett 10:466–471CrossRefGoogle Scholar
  45. 45.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single–layer graphene. Nano Lett 8:902–907CrossRefGoogle Scholar
  46. 46.
    Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10:1645–1651CrossRefGoogle Scholar
  47. 47.
    Faugeras C, Faugeras B, Orlita M, Potemski M, Nair RR, Geim AK (2010) Thermal conductivity of graphene in Corbino membrane geometry. ACS Nano 4:1889–1892CrossRefGoogle Scholar
  48. 48.
    Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328:213–216CrossRefGoogle Scholar
  49. 49.
    Yoon D, Son YW, Cheong H (2011) Strain-dependent splitting of the double-resonance raman scattering band in graphene. Phys Rev Lett 106:155502CrossRefGoogle Scholar
  50. 50.
    Cançado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A (2004) Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett 93:247401CrossRefGoogle Scholar
  51. 51.
    Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov KS, Basko DM, Ferrari AC (2009) Raman spectroscopy of graphene edge. Nano Lett 9:1433–1441CrossRefGoogle Scholar
  52. 52.
    You Y, Ni Z, Yu T, Shen Z (2008) Edge chirality determination of graphene by Raman spectroscopy. Appl Phys Lett 93:163112CrossRefGoogle Scholar
  53. 53.
    Gupta AK, Russin TJ, Gutiérrez HR, Eklund PC (2009) Probing graphene edges via Raman scattering. ACS Nano 3:45–52CrossRefGoogle Scholar
  54. 54.
    Varchon F, Mallet P, Magaud L, Veuillen J–Y (2008) Rotational disorder in few–layer graphene films on 6H–SiC(000–1): a scanning tunneling microscopy study. Phys Rev B 77:165415CrossRefGoogle Scholar
  55. 55.
    Li G, Luican A, Lopes dos Santos JMB, Castro Neto AH, Reina A, Kong J, Andrei EY (2009) Observation of Van Hove singularities in twisted graphene layers. Nat Phys 6:109–113CrossRefGoogle Scholar
  56. 56.
    Poncharal P, Ayari A, Michel T, Sauvajol J–L (2008) Raman spectra of misoriented bilayer graphene. Phys Rev B 78:113407CrossRefGoogle Scholar
  57. 57.
    Ni Z, Wang Y, Yu T, You Y, Shen Z (2008) Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys Rev B 77:235403CrossRefGoogle Scholar
  58. 58.
    Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface enhanced Raman spectroscopy of graphene. ACS Nano 4:5617–5626CrossRefGoogle Scholar
  59. 59.
    Saito Y, Verma P, Masui K, Inouye Y, Kawata S (2009) Nano–scale analysis of graphene layers by tip–enhanced near–field Raman spectroscopy. J Raman Spectrosc 40:1434–1440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Duhee Yoon
    • 1
  • Hyeonsik Cheong
    • 1
  1. 1.Department of PhysicsSogang UniversitySeoulSouth Korea

Personalised recommendations