Skip to main content

Confocal Surface-Enhanced Raman Microscopy at the Surface of Noble Metals

  • Chapter
Raman Spectroscopy for Nanomaterials Characterization

Abstract

The optical and spectroscopic properties of nanoparticles are of interest for a wide variety of methodic and technical fields of applications. The investigation of nanoparticles requires convincing characterization methods with high spatial resolution. The surface-enhanced Raman spectroscopy is a sensitive tool for characterizing the chemical structure of metal nanoparticles like gold, silver, or copper. If combined with local confocal microscopy it becomes a method for delivering optical and geometrical information of nanosize metallic structures. This method is called confocal surface-enhanced Raman spectroscopic (SERS) microscopy. The fundamentals and significance of confocal SERS microscopy are described based on literature data and recent results of own studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  2. Otto A (1991) Surface-enhanced Raman scattering of adsorbates. J Raman Spectrosc 22:743

    Article  CAS  Google Scholar 

  3. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241

    Article  CAS  Google Scholar 

  4. Jensen L, Aikens CM, Schatz GC (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37:1061

    Article  CAS  Google Scholar 

  5. Michaels AM, Jiang J, Brus L (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamin 6 G molecules. J Phys Chem B 104:11965

    Article  CAS  Google Scholar 

  6. Xu HX, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single molecule sensivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318

    Article  CAS  Google Scholar 

  7. Jiang J, Bosnick K, Maillard M, Brus L (2003) Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B 107:9964

    Article  CAS  Google Scholar 

  8. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357

    Article  CAS  Google Scholar 

  9. Kneipp J, Kneipp H, Kneipp K (2008) SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052

    Article  CAS  Google Scholar 

  10. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667

    Article  CAS  Google Scholar 

  11. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102

    Article  CAS  Google Scholar 

  12. Otto A (2006) On the significance of Shalaev’s “hot spots” in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold. J Raman Spectrosc 37:937

    Article  CAS  Google Scholar 

  13. Reents B, Lacconi G, Plieth W (1994) Nucleation in the electrocrystallization process studied by surface-enhanced raman spectroscopy. J Electroanal Chem 376:185

    Article  CAS  Google Scholar 

  14. Pawley JB (ed) (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, New York

    Google Scholar 

  15. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685

    Article  CAS  Google Scholar 

  16. Fleischer M, Zhang D, Braun K, Jäger S, Ehrlich R, Häffner M, Stanciu C, Hörber JKH, Meixner AJ, Kern DP (2010) Tailoring gold nanostuctures for near-field optical applications. Nanotechnology 21:065301

    Article  CAS  Google Scholar 

  17. Lee PC, Meisel DJ (1982) Adsorption and surface enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  18. Vosgröne T, Meixner AJ (2005) Surface-and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules. ChemPhysChem 6:154

    Article  Google Scholar 

  19. Vosgröne T, Meixner AJ, Anders A, Dietz H, Sandmann G, Plieth W (2005) Electrochemically deposited silver particles for surface enhanced Raman spectroscopy. Surf Sci 597:102

    Article  Google Scholar 

  20. Hildebrand P, Epding A, Vanhecke F, Keller S, Schrader B (1995) Molecule-specificity of surface enhanced Raman scattering. J Mol Struct 349:137

    Article  Google Scholar 

  21. Ullmann R, Will T, Kolb DM (1993) Nanoscale decoration of Au(111) electrodes with Cu clusters by an STM. Chem Phys Lett 209:238

    Article  CAS  Google Scholar 

  22. Fransaer J, Penner RM (1999) Brownian dynamics simulation of the growth of metal nanocrystal ensembles on electrode surfaces from solution. I. Instantaneous nucleation and diffusion-controlled growth. Phys Chem B 103:7643

    Article  CAS  Google Scholar 

  23. Penner RM (2001) Brownian dynamics simulations of the growth of metal nanocrystal ensembles on electrode surfaces in solution: 2. The effect of deposition rate on particle size dispersion. Phys Chem B 105:8672

    Article  CAS  Google Scholar 

  24. Zoval JV, Stiger RM, Biernacki P, Penner RM (1996) Electrochemical deposition of silver nanocrystallites on the atomically smooth Graphite basal plane. J Phys Chem 100:837

    Article  CAS  Google Scholar 

  25. Zoval JV, Biernacki P, Penner RM (1996) Implementation of electrochemically synthesized silver nanocrystallites for the preferential SERS enhancement of defect modes on thermally etched Graphite surfaces. Anal Chem 68:1585

    Article  CAS  Google Scholar 

  26. Liu H, Penner RM (2000) Size-selective electrodeposition of mesoscale metal particles in the uncoupled limit. J Phys Chem B 104:9131

    Article  CAS  Google Scholar 

  27. Scheludko A, Todorova M (1952) Bull Acad Bulg Sci Phys 3:61

    Google Scholar 

  28. Milchev E, Vassileva E, Kertov V (1980) Electrolytic nucleation of silver on a glassy carbon electrode. J Electroanal Chem 107:323–336

    Article  CAS  Google Scholar 

  29. Sandmann G, Dietz H, Plieth W (2000) Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J Electroanal Chem 491:78

    Article  CAS  Google Scholar 

  30. Ueda M, Dietz H, Anders A, Kneppe H, Meixner A, Plieth W (2002) Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochim Acta 48:377

    Article  CAS  Google Scholar 

  31. Taylor CE, Garvey SD, Pemberton JE (1996) Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy. Anal Chem 68:2401

    Article  CAS  Google Scholar 

  32. Norrod KL, Rowlen KL (1998) Removal of carbonaceous contamination from SERS-active silver by self-assembly of decanethiol. Anal Chem 70:4218

    Article  CAS  Google Scholar 

  33. Wessel J (1985) Surface-enhanced optical microscopy. J Opt Soc Am B 2(9):1538

    Article  CAS  Google Scholar 

  34. Stöckle RM, Sou YD, Deckert V, Zanobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318:131

    Article  Google Scholar 

  35. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near field Raman scattering. Opt Commun 183:333

    Article  CAS  Google Scholar 

  36. Bouhelier A (2006) Field-enhanced scanning near-field optical microscopy. Microsc Res Tech 69:563

    Article  CAS  Google Scholar 

  37. Plieth W, Dietz H, Anders A, Sandmann G, Meixner A, Weber M, Kneppe H (2005) Electrochemical preparation of silver and gold nanoparticles: characterization by confocal and surface enhanced Raman microscopy. Surf Sci 597:119

    Article  CAS  Google Scholar 

  38. Henglein A (1977) The reactivity of silver atoms in aqueous solutions (a γ-radiolysis study). Bunsenges Phys Chem 81:556

    CAS  Google Scholar 

  39. Plieth W (1982) Direct observation of size-dependent optical enhancement in single metal nanoparticles. J Phys Chem 86:3166

    Article  CAS  Google Scholar 

  40. Plieth W, Dietz H, Sandmann G, Dietz H, Meixner AJ, Kneppe H, Weber M (1999) Optical phenomena of single silver clusters. In: Landolt D, Matlosz M, Sato Y (eds) Fundamentals in electrochemical deposition and dissolution. Proceedings, vol 99–33. The Electrochemical Society, Pennington, New Jersey

    Google Scholar 

  41. Moyer PJ, Schmidt J, Eng LM, Meixner AJ, Sandmann G, Dietz H, Plieth W (2000) Surface-enhanced Raman scattering spectroscopy of single carbon domains on individual Ag nanoparticles on a 25 ms time scale. J Am Soc 122:5409

    Article  CAS  Google Scholar 

  42. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126

    Article  CAS  Google Scholar 

  43. Markel VA, Shalaev VM, Zhang P, Huynh W, Tay L, Haslet TL, Moskovits M (1999) Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Phys Rev B 59:10903

    Article  CAS  Google Scholar 

  44. Emory SR, Haskins WE, Nie S (1998) Direct observation of size-dependent optical enhancement in single metal nanoparticles. J Am Chem Soc 120:8009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support by the Deutsche Forschungsgemeinschaft and by the Fonds of the Chemical Industrie. We also acknowledge valuable discussions and experimental support given by Prof. A. J. Meixner (Universität Tübingen) and his former research fellows H. Kneppe, M. Weber, J. Schmidt, and T. Vosgröne.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietz, H., Sandmann, G., Anders, A., Plieth, W. (2012). Confocal Surface-Enhanced Raman Microscopy at the Surface of Noble Metals. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_8

Download citation

Publish with us

Policies and ethics