Skip to main content

Raman Spectroscopy for Characterization of Semiconducting Nanowires

  • Chapter
Raman Spectroscopy for Nanomaterials Characterization

Abstract

Raman scattering behavior germane to semiconductor nanowires (NWs) and the application of Raman spectroscopy to characterize the structure, composition, strain, and temperature of individual semiconductor nanowires with submicron resolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    Article  CAS  Google Scholar 

  2. Givargizov EI (1975) Fundamental aspects of VLS growth. J Cryst Growth 31:20–30

    Article  CAS  Google Scholar 

  3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  4. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  5. Pollak FH (1991) Characterization of semiconductors by Raman spectroscopy. In: Grasselli JG, Bulkin BJ (eds) Analytical Raman spectroscopy, vol 114, Chemical analysis series. Wiley, New York, pp 137–214

    Google Scholar 

  6. Hayes W, Loudon R (1978) Scattering of light by crystals. Wiley, New York

    Google Scholar 

  7. Cardona M, Guntherodt G (eds) (1975–1984) Light scattering in solids, vol I–IV, Topics in applied physics. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  8. Cao LY, White JS, Park JS, Schuller JA, Clemens BM, Brongersma ML (2009) Engineering light absorption in semiconductor nanowire devices. Nat Mater 8:643–647

    Article  CAS  Google Scholar 

  9. Chen G, Wu J, Lu QJ, Guitierrez HRH, Xiong Q, Pellen ME, Petko JS, Werner DH, Eklund PC (2008) Optical antenna effects in semiconducting nanowires. Nano Lett 8:1341–1346

    Article  Google Scholar 

  10. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  11. Cao LY, Nabet B, Spanier JE (2006) Enhanced Raman scattering from individual semi-conductor nanocones and nanowires. Phys Rev Lett 96:157402

    Article  Google Scholar 

  12. Frechette J, Carraro C (2006) Diameter-dependent modulation and polarization anisotropy in Raman scattering from individual nanowires. Phys Rev B 74:161404

    Article  Google Scholar 

  13. Frechette J, Carraro C (2006) Resolving radial composition gradients in polarized confocal Raman spectra of individual 3 C-SiC nanowires. J Am Chem Soc 128:14774–14775

    Article  CAS  Google Scholar 

  14. Schmidt V, Senz S, Gosele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935

    Article  CAS  Google Scholar 

  15. Pauzauskie PJ, Talaga D, Seo K, Yang PD, Lagugne-Labarthet F (2005) Polarized Raman confocal microscopy of single gallium nitride nanowires. J Am Chem Soc 127:17146–17147

    Article  CAS  Google Scholar 

  16. Caroff P, Dick KA, Johansson J, Messing ME, Deppert D, Samuelson L (2009) Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat Nanotechnol 4:50–55

    Article  CAS  Google Scholar 

  17. Zardo I, Conesa-Boj S, Peiro F, Morante JR, Arbiol J, Uccelli E, Abstreiter G, Fontcuberta i Morral A (2009) Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects. Phys Rev B 80:245324

    Article  Google Scholar 

  18. Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass MH, Bleloch AL, Estrade S, Kaniber M, Rossler J, Peiro F, Morante JR, Abstreiter G, Samuelson L, Fontcuberta i Morral A (2009) Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys Rev B 80:245325

    Article  Google Scholar 

  19. Lopez FJ, Hemesath ER, Lauhon LJ (2009) Ordered stacking fault arrays in silicon nanowires. Nano Lett 9:2774–2779

    Article  CAS  Google Scholar 

  20. Cao LY, Laim L, Nabet B, Spanier JE (2005) Diamond-hexagonal semiconductor nanocones with controllable apex angle. J Am Chem Soc 127:13782–13783

    Article  CAS  Google Scholar 

  21. Richter H, Wang ZP, Ley L (1981) The one-phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629

    Article  CAS  Google Scholar 

  22. Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58:739–741

    Article  CAS  Google Scholar 

  23. Piscanec S, Cantoro M, Ferrari AC, Zapien JA, Liftzhitz Y, Lee ST, Hofmann S, Robertson J (2003) Raman spectroscopy of silicon nanowires. Phys Rev B 68:241312

    Article  Google Scholar 

  24. Li B, Yu D, Zhang SL (1999) Raman spectral study of silicon nanowires. Phys Rev B 59:1645–1648

    Article  CAS  Google Scholar 

  25. Wang RP, Zhou GW, Liu YL, Pan SH, Zhang HZ, Yu DP, Zhang Z (2000) Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Phys Rev B 61:16827–16832

    Article  CAS  Google Scholar 

  26. Adu KW, Xiong Q, Gutierrez HR, Chen G, Eklund PC (2006) Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl Phys A 85:287–297

    Article  CAS  Google Scholar 

  27. Chen JN, Conache G, Pistol ME, Gray SM, Borgstrom MT, Xu HX, Xu HQ, Samuelson L, Hakanson U (2010) Probing strain in bent semiconductor nanowires with Raman spectroscopy. Nano Lett 10:1280–1286

    Article  Google Scholar 

  28. Tsang JC, Mooney PM, Dacol F, Chu JO (1994) Measurement of alloy composition and strain in thin Ge x Si1−x layers. J Appl Phys 75:8098–8108

    Article  CAS  Google Scholar 

  29. Alonso MI, Winer K (1989) Raman spectra of c-Si1−x Ge x alloys. Phys Rev B 39:10056–10062

    Article  CAS  Google Scholar 

  30. Yang JE, Park WH, Kim CJ, Kim ZH, Jo MH (2008) Axially graded heteroepitaxy and Raman spectroscopic characterizations of Si1−x Ge x nanowires. Appl Phys Lett 92:263111

    Article  Google Scholar 

  31. Nishimura C, Imamura G, Fujii M, Kawashima T, Saitoh T, Hayashi S (2008) Raman characterization of Ge distribution in individual Si1−x Ge x alloy nanowires. Appl Phys Lett 93:203101

    Article  Google Scholar 

  32. Lu QJ, Adu KW, Gutierrez HR, Chen GG, Lew KK, Nimmatoori P, Zhang X, Dickey EC, Redwing JM, Eklund PC (2008) Raman scattering from Si1−x Ge x alloy nanowires. J Phys Chem C 112:3209–3215

    Article  CAS  Google Scholar 

  33. Venugopal R, Lin PI, Chen YT (2006) Photoluminescence and Raman scattering from catalytically grown Zn x Cd1−x Se alloy nanowires. J Phys Chem B 110:11691–11696

    Article  CAS  Google Scholar 

  34. Liang YQ, Zhai L, Zhao XS, Xu DS (2005) Band gap engineering of semiconductor nanowires through composition modulation. J Phys Chem B 109:7120–7123

    Article  CAS  Google Scholar 

  35. Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete compositional tunability of InGaN nanowires using a combinatorial approach. Nat Mater 6:951–956

    Article  CAS  Google Scholar 

  36. Abstreiter G, Bauser E, Fischer A, Ploog K (1978) Raman spectroscopy – a versatile tool for characterization of thin films and heterostructures of GaAs and Al x Ga1−x As. Appl Phys 16:345–352

    Article  CAS  Google Scholar 

  37. Schmidt V, Senz S, Gosele U (2007) Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires. Appl Phys A 86:187–191

    Article  CAS  Google Scholar 

  38. Bjork MT, Schmid H, Knoch J, Riel H, Riess W (2009) Donor deactivation in silicon nanostructures. Nat Nanotechnol 4:103–107

    Article  Google Scholar 

  39. Cerdeira F, Fjeldly TA, Cardona M (1973) Effects of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes. Phys Rev B 8:4734–4745

    Article  CAS  Google Scholar 

  40. Cerdeira F, Buchenauer CJ, Pollak FH, Cardona M (1972) Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors. Phys Rev B 5:580–593

    Article  Google Scholar 

  41. Balkanski M, Wallis RF, Haro E (1983) Anharmonic effects in light scattering due to optical phonons in silicon. Phys Rev B 28:1928–1934

    Article  CAS  Google Scholar 

  42. Locher R, Wagner J, Fuchs F, Maier M, Gonon P, Koidl P (1995) Optical and electrical characterization of boron-doped diamond films. Diam Relat Mater 4:678–683

    Article  CAS  Google Scholar 

  43. Olego D, Cardona M (1981) Self-energy effects on the optical phonons of heavily doped p-GaAs and p-Ge. Phys Rev B 23:6592–6602

    Article  CAS  Google Scholar 

  44. Chandrasekhar M, Renucci JB, Cardona M (1978) Effects of interband excitations on Raman phonons in heavily doped n-Si. Phys Rev B 17:1623–1633

    Article  CAS  Google Scholar 

  45. Imamura G, Kawashima T, Fujii M, Nishimura C, Saitoh T, Hayashi S (2008) Distribution of active impurities in single silicon nanowires. Nano Lett 8:2620–2624

    Article  CAS  Google Scholar 

  46. Imamura G, Kawashima T, Fujii M, Nishimura C, Saitoh T, Hayashi S (2009) Raman characterization of active B-concentration profiles in individual p-type/intrinsic and intrinsic/p-type Si nanowires. J Phys Chem C 113:10901–10906

    Article  CAS  Google Scholar 

  47. Doerk GS, Lestari G, Liu F, Carraro C, Maboudian R (2010) Ex situ vapor phase boron doping of silicon nanowires using BBr3. Nanoscale 2:1165–1170

    Article  CAS  Google Scholar 

  48. Fukata N (2009) Impurity doping in silicon nanowires. Adv Mater 21:2829–2832

    Article  CAS  Google Scholar 

  49. Temple PA, Hathaway CE (1973) Multiphonon Raman spectrum of silicon. Phys Rev B 7:3685–3697

    Article  CAS  Google Scholar 

  50. Dufouleur J, Colombo C, Gamma T, Ketterer B, Uccelli E, Nicotra M, Morral AFI (2010) P-doping mechanism in catalyst-free gallium arsenide nanowires. Nano Lett 10:1734–1740

    Article  CAS  Google Scholar 

  51. Hilse M, Ramsteiner M, Breuer S, Geelhaar L, Riechert H (2010) Incorporation of the dopants Si and Be into GaAs nanowires. Appl Phys Lett 96:193104

    Article  Google Scholar 

  52. Schwartz GP, Gualtieri GJ, Dubois LH, Bonner WA, Ballman AA (1984) Free carrier reduction in vacuum-annealed S-, Sn-, and Ge-doped (100) InP. J Electrochem Soc 131:1716–1720

    Article  CAS  Google Scholar 

  53. Darakchieva V, Paskova T, Schubert M, Arwin H, Paskov PP, Monemar B, Hommel D, Heuken M, Off J, Scholz F, Haskell BA, Fini PT, Speck JS, Nakamura S (2007) Anisotropic strain and phonon deformation potentials in GaN. Phys Rev B 75:195217

    Article  Google Scholar 

  54. Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M, Weyers M (2008) Anisotropic strain on pnonons in a-plane GaN layers studied by Raman scattering. J Mater Sci Mater Electron 19:S51–S57

    Article  CAS  Google Scholar 

  55. Briggs RJ, Ramdas AK (1976) Piezospectroscopic study of the Raman spectrum of cadmium sulfide. Phys Rev B 13:5518–5529

    Article  CAS  Google Scholar 

  56. Narayan S, Kalidindi SR, Schadler LS (1997) Determination of unknown stress states in silicon wafers using microlaser Raman spectroscopy. J Appl Phys 82:2595–2602

    Article  Google Scholar 

  57. Montazeri M, Fichenscher M, Smith LM, Jackson HE, Yarrison-Rice J, Kang JH, Gao Q, Tan HH, Jagadish C, Guo YN, Zou J, Pistol ME, Pryor CE (2010) Direct measure of strain and electronic structure in GaAs/GaP core-shell nanowires. Nano Lett 10:880–886

    Article  CAS  Google Scholar 

  58. Nolte DD, Walukiewicz W, Haller EE (1987) Band-edge hydrostatic deformation potentials in III-V semiconductors. Phys Rev Lett 59:501–504

    Article  CAS  Google Scholar 

  59. Qiang H, Pollak FH (1990) Piezo-photorereflectance of the direct gaps of GaAs and Ga0.78Al0.22As. Solid State Commun 76:1087–1091

    Article  CAS  Google Scholar 

  60. Pistol ME, Pryor CE (2008) Band structure of core-shell semiconductor nanowires. Phys Rev B 78:115319

    Article  Google Scholar 

  61. Zhu Y, Xu F, Qin QQ, Fung WY, Lu W (2009) Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett 9:3934–3939

    Article  CAS  Google Scholar 

  62. Doerk GS, Carraro C, Maboudian R (2009) Temperature dependence of Raman spectra for individual silicon nanowires. Phys Rev B 80:073306

    Article  Google Scholar 

  63. Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167

    Article  CAS  Google Scholar 

  64. Hochbaum AI, Chen RK, Delgado RJ, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167

    Article  CAS  Google Scholar 

  65. Hsu IK, Pows MT, Bushmaker A, Aykol M, Shi L, Cronin SB (2009) Optical absorption and thermal transport of individual suspended carbon nanotube bundles. Nano Lett 9:590–594

    Article  CAS  Google Scholar 

  66. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  67. Ghosh S, Bao WZ, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:555–558

    Article  CAS  Google Scholar 

  68. Doerk GS, Carraro C, Maboudian R (2010) Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 4:4908–4914

    Article  CAS  Google Scholar 

  69. Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57:303–331

    Article  CAS  Google Scholar 

  70. Berweger S, Raschke MB (2009) Polar phonon mode selection rules in tip-enhanced Raman scattering. J Raman Spectrosc 40:1413–1419

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doerk, G.S., Carraro, C., Maboudian, R. (2012). Raman Spectroscopy for Characterization of Semiconducting Nanowires. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_17

Download citation

Publish with us

Policies and ethics