Skip to main content

Coolability of layers of molten reactor material

  • Chapter
Multiphase Flow Dynamics 5
  • 2149 Accesses

Abstract

Chapter 15 is devoted to the coolability of layers of molten nuclear reactor material. Such physics is important for designing of stabilization of spread melt in reactor compartments. After defining the problem with its boundary conditions and some simplifying assumptions the system of differential equations describing the process is presented: mass and energy conservation. The following effects are taken into account: the molten steal dropped in the melt or originating inside the melt; the gas release from a sub-layer; the viscous layer; the crust formation; the buoyancy driven convection; the film boiling; the heat conduction through the structures; oxide crust formation on colder heat conducting structures. The existence of a metallic layer is also considered. Some test cases are presented to make easy the application of the presented models: oxide over metal and oxide besides metal. A simple model for gravitational flooding of hot solid horizontal surface by water leading to hyperbolic system is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsmeier, H., et al.: COMMET-Konzept, Chap. 6.1. In B. Mühl, ed., Forschungszentrum Karlsruhe, Technik and Umwelt. Untersuchungen zu auslegungsüberschreitenden Ereignissen (Unfällen) in Leichtwasserreaktoren (März 1997)

    Google Scholar 

  • Berenson, P.J.: Film-boiling heat transfer from a horizontal surface. J. Heat Transfer 83, 351–361 (1961)

    Google Scholar 

  • Fish, J.D., Pilch, M., Arellano, F.E.: Demonstration of passively-cooled particle-bed core retention. In: Proceedings of the LMFBR Safety Topical Meeting, Lyon, Ecully France, pp. III-327–336 (July 1982)

    Google Scholar 

  • Friedrich, H.J.: SNR-300 Tank external core retention device design and philosophy behind it. In: Coats RL ed., The Second Annual Post – Accident Heat Removal (PAHR) Information Exchange, SAND76-9008, p 333 (November 13–14, 1975)

    Google Scholar 

  • Friedrich, H.J.: Dynamic behavior of SNR-300 core retention device in experimental support of the design concept. In: Baker, L., Bingle, J.D. (eds.) Proceedings of the Third Post-Accident Heat Removal Information Exchange, ANL-78-10, (November 2-4, 1977)

    Google Scholar 

  • Gandrille, P.: Input data for severe accident mitigation measures. Nuclear System Supply System Part, FRA Report EPTA DC 1476, Rev. A (April 4, 1997)

    Google Scholar 

  • Hübel, H.J.: The safety related criteria and design features for SNR. In: Proceedings Fast Reactor Safety Meeting, Beverly Hills CONF-740401-P1, pp. 3–21 (April 1974)

    Google Scholar 

  • Kolev, N.I.: Transiente Zweiphasenströmung (Transient Two-Phase Flow), ch. 4, pp. 34–38. Springer, Heidelberg (1986)

    Google Scholar 

  • Kolev, N.I.: External Cooling of EPR 1500 Reactor Vessel under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E030, Project R&D (April 20, 1995a)

    Google Scholar 

  • Kolev, N.I.: IVA4 Computer code: The model for a film boiling on a sphere in subcooled, saturated and superheated water. In: The Second International Conference on Multiphase Flow, 1995-Kyoto, April 3-7 (1995b)

    Google Scholar 

  • Kolev, N.I.: Gravitational flooding of hot solid horizontal surface by water. Kerntechnik 61, 67–76 (1996)

    Google Scholar 

  • Kutateladse, S.S.: A hydrodynamic theory of changes in the boiling process under free convection conditions. Izv. Akad. Nauk SSSR, Otd. Tech. Nauk 4, 529–536 (1951); AEC-tr-1991 (1954)

    Google Scholar 

  • Kolev, N.I.: External cooling Of PWR reactor vessel during severe accident. Kerntechnik 61(2-3), 67–76 (1996); abbreviated form in Proceedings of ICONE-4, The Fourth International Conference on Nuclear Engineering, New Orleans, USA (March 8-12, 1996)

    Google Scholar 

  • Kolev, N.I.: IVA4 Layers vol 2 A computer code for analysis of coolability of molten reactor materials spread as a horizontal layers, KWU NA-M/1997/E050, Project R&D (October 6,1997)

    Google Scholar 

  • Kolev, N.I.: Verification of the IVA4 film boiling model with the data base of Liu and Theofanous. In: Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI), JAERI-Tokai Research Establishment, Japan (May 19-21,1997)

    Google Scholar 

  • Kolev, N.I.: Computational analysis of transient 3D-melt-water interactions. In: 8th International Conference on Nuclear Engineering, Baltimore, Maryland USA, ICONE-8809, April 2-6 (2000a)

    Google Scholar 

  • Kolev, N.I.: Needs of industrial fluid dynamics applications. In: 2000 ASME Fluids Engineering Division Summer Meeting (FEDSM), Industry Exchange Program, Sheraton Boston Hotel, Boston, Massachusetts, June 11-15 (2000b)

    Google Scholar 

  • Kulacki, F.A., Goldstein, R.J.: Thermal convection in a horizontal fluid layer with uniform volumetric energy source. J. Fluid Mech. 55(2), 271–287 (1972)

    Article  Google Scholar 

  • Mayinger, F., Jahn, M., Reineke, H.H.: U. Steinberner, Untersuchung thermodynamischer Vorgänge sowie Wärmeaustausch in der Kernschmelze, Teil 1: Zusammenfassende Darstellung der Ergebnisse, Bundesministerium für Forschung und Technologie, Arbeitsbericht BMFT – RS 48/1 (1975)

    Google Scholar 

  • Müller, U., Schulenberg, T.: Post accident heat removal research: A state of the art review, KfK 3601, Report Kernforschungszentrum Karlsruhe (November 1983)

    Google Scholar 

  • Richard, P., Szabo, I.: In-vessel core retention study: Proposal for a core-catcher concept. In: Proceedings of the ICON 5: 5th International Conference on Nuclear Engineering, Nice, France, ICONE5-2156 (May 26-30, 1997)

    Google Scholar 

  • Savino, J.M., Siegel, R.: An analytical solution for solidification of moving warm liquid onto an isothermal cold wall. Int. J. Heat Mass Transfer 12, 803–809 (1968)

    Article  Google Scholar 

  • Swanson, D.G., Cotton, I., Dhir, V.K.: A Thoria Rubble Bed for Post Accident Core Retention. In: Müller, U., Günter, C. (eds.) Post-Accident Debris Cooling. Proceedings of the Fifth Post Accident Heat Removal Information Exchange Meeting, G. Braun, Karlsruhe, pp. 307–312 (1982, 1983); ISBN3 – 7650-2034-6

    Google Scholar 

  • VDI-Wärmeatlas, Berechnungsblätter für den Wärmeübergang, Sechste Auflage, VDI Verlag, Düsseldorf (1991)

    Google Scholar 

  • Zuber, N., Findlay, J.A.: Averaged volumetric concentration in the two-phase flow systems. J. Heat Transfer 87, 453 (1965)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Coolability of layers of molten reactor material. In: Multiphase Flow Dynamics 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20601-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20601-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20600-9

  • Online ISBN: 978-3-642-20601-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics