Skip to main content

Fragmentation of melt in coolant

  • Chapter
Multiphase Flow Dynamics 2
  • 2989 Accesses

Introduction

Let us start with some definitions necessary to understand the content of this Chapter:

a) The term melt is used here for liquid having solidification temperature higher than the film boiling temperature of the surrounding coolant.

b) Coolant is the liquid surrounding the melt.

c) Mechanical fragmentation is fragmentation not influenced by local heat and mass transfer processes.

d) Thermo-mechanical fragmentation is mechanical fragmentation additionally amplified by local heat and mass transfer.

e) Events distorting the film boiling process are interface instabilities caused by

  • inherent vapor-coolant instability and

  • externally introduced pressure pulses.

f) Inherent vapor-coolant instability is an interface instability caused by

  • mechanical fragmentation of the initially unstable particle leading to intimate melt-coolant contact during the fragmentation,

  • transition from film boiling to transition boiling, and

  • cavitation of vapor bubbles in subcooled liquid in the immediate neighborhood of the particle in film boiling.

g) Contact heat transfer is a local contact between melt and liquid coolant.

Once established, stationary film boiling at the surface of a liquid sphere is a very stable process. Events distorting the film boiling process may lead to intimate melt-coolant contact resulting in effective energy transfer between the hot droplet and the surrounding coolant. The mechanical feedback to the droplet leads to additional surface fragmentation which is called thermo-mechanical fragmentation. The result is generation of local pressure pulses. If the same happens not only with a single drop but with a family of melt drops, the resulting pressure pulse may contain considerably more energy than the single drop event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyoshi, R., Nishio, S., Tanasawa, I.: A study of the effect of non-condensable gas in the vapor film on vapor explosion. Int. J. Heat Mass Transfer 33(4), 603–609 (1990)

    Article  Google Scholar 

  • Armstrong, D.R., Goldfuss, G.T., Gebner, R.H.: Explosive interaction of molten UO2 and Liquid Sodium. ANL-76 24 (1976)

    Google Scholar 

  • Ando, M., Caldarola, L.: Triggered fragmentation experiments at Karlsruhe. In: Müller, U., Günter, C. (eds.) Post Accident Debris Cooling, Proc. of the Fifth Post Accident Heat Removal Information Exchange meeting, pp. 13–21. NRC Karlsruhe, G. Braun Karlsruhe (1982)

    Google Scholar 

  • Ando, K.: Experiment zur getriggerten Fragmentation an einem schmelzflüssigen Kupfertröpfen in Wasser. KfK 3667 (1984)

    Google Scholar 

  • Arakeri, V.H., et al.: Thermal interaction for molten tin dropped into water. Int. J. Heat Mass Transfer 21, 325–333 (1978)

    Article  Google Scholar 

  • Bang, K.H., Kim, M.K.: Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions. In: Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-7, New York, USA, NUREG/CP-0142, pp. 1677–1687 (1995)

    Google Scholar 

  • Bankoff, S.G., Kovarik, F., Yang, J.W.: A model for fragmentation of molten metal oxides in contact with water. In: Proc. Int. Mtg. on LWR Severe Accident Evaluation, Cambridge, MA, pp. TS-6.6-1–6.6-8 (1983)

    Google Scholar 

  • Bankoff, S.G., Yang, J.W.: Studies Relevant to in-Vessel Steam Explosions. In: Müller, U., Rehme, K., Rust, K. (eds.) Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, October 10-13, p. 312. G. Braun, Karlsruhe (1989)

    Google Scholar 

  • Becker, K.M., Linland, K.P.: The effect of surfactants on hydrodynamic fragmentation and steam explosions. KTK-NEL-50 (April 1991) (Rev. edn.)

    Google Scholar 

  • Belman, R., Pennington, R.H.: Effect of surface tension and viscosity on Taylor instability. Quart. Appl. Maths 12, 151–162 (1954)

    Google Scholar 

  • Benjamin, T.B., Ellis, A.T.: Phil. Trans. R. Soc. A, 260, 221-240 (1966)

    Google Scholar 

  • Berman, L.D.: Sorotivlenie na granize razdela faz pri plenochnoy kondensazii para niskovo davlenija, Tr. Vses. Nauchnoizsledovatelskova Instituta Khim. Mashinostroenie, vol. 36 p. 66 (1961)

    Google Scholar 

  • Bjorkquist, G.M.: An experimental investigation of molten metal in water. TID-26820 (1975)

    Google Scholar 

  • Bjornard, T.A., et al.: The pressure behavior accompanying the fragmentation of tin in water. Transaction of American Nuclear Society 29, 247 (1974)

    Google Scholar 

  • Board, S.J., Farmer, C.L., Poole, D.H.: Fragmentation in thermal explosions. Berkeley Nuclear Laboratories, RD/B/N2423, CFR/SWP/P (72), 81 (1972)

    Google Scholar 

  • Brayer, C., Berthoud, G.: First vapor explosion calculations performed with MC3D thermal-hydraulic code. In: OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, Japan, May 19-21 (1997)

    Google Scholar 

  • Brennen, C.E.: Cavitation and bubble dynamics. Oxford University Press, Oxford (1995)

    Google Scholar 

  • Buchman, D.J.: Penetration of a solid layer by a liquid jet. J. Phys. D: Appl. Phys. 6, 1762–1771 (1973)

    Article  Google Scholar 

  • Büttner, R., Zimanowski, B.: Physics of thermohydraulic explosions. Physical Review E 57(5) (1998)

    Google Scholar 

  • Bürger, M., et al.: Examination of thermal detonation codes and included fragmentation models by means of triggered propagation experiments in a tin/water mixture. Nucl. Eng. Des. 131, 61–70 (1991)

    Article  Google Scholar 

  • Bürger, M., Cho, S.H., von Berg, E., Schatz, A.: Modeling of drop fragmentation in thermal detonation waves and experimental verification. In: Specialist’s Meeting on Fuel-Coolant Interactions, Santa Barbara, California, USA, January 5-8 (1993)

    Google Scholar 

  • Buxton, L.D., Nelson, L.S., Benedick, W.B.: Steam explosion triggering in efficiency studies. In: Fourth CSNI Specialists Meeting on Fuel-Coolant Interaction in Nuclear Reactor Safety, Bournemouth, UK, pp. 387–408 (1979)

    Google Scholar 

  • Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids, 2nd edn. Oxford Science Publications. Oxford University Press, Oxford (1959)

    Google Scholar 

  • Chapman, R., Pineau, D., Corradini, M.: Mitigation of vapor explosions in one-dimensional large scale geometry with surfactant coolant additives. In: Proc. of the Int. Seminar on Vapor Explosions and Explosive Eruptions, Sendai, Japan, May 22-25, pp. 47–58 (1997)

    Google Scholar 

  • Chen, X., Yuen, W.W., Theofanous, T.: On the constitutive description of the microinteractions concept in steam explosions. In: Proceedings of the Seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-7, New York, USA, NUREG/CP-0142 (1995)

    Google Scholar 

  • Cho, D.H., Gunther, W.H.: Fragmentation of molten materials dropped into water. Trans. of the Am. Nucl. Soc. 16(1), 185–186 (1973)

    Google Scholar 

  • Ciccarelli, G.: Investigation of vapor explosions with single molten metal drops in water using x-ray. PhD Thesis, McGill University, Montreal, Quebec, Canada (1992)

    Google Scholar 

  • Corradini, M.: Analysis and Modelling of Large Scale Steam Explosion Experiments. Nucl. Sci. Eng. 82, 429–447 (1982)

    Google Scholar 

  • Corradini, M.L.: Vapor explosion phenomena: scaling considerations. In: Proc. of the ASME-JSME 4th International Conference on Nuclear Engineering ASME 1996, New Orleans, Louisiana, USA, March 10-14, vol. 1 Part A, pp. 309–316 (1996)

    Google Scholar 

  • Cronenberg, A.W.: Solidification phenomena and fragmentation. In: Sachs, R,G., Kyger, J.A.(eds.) Reactor Development Program Progress Report, ANL-RDP-18, Liquid Metal Fast Breeder Reactors (UC-79), August 29, p 7.19 (1973)

    Google Scholar 

  • Drumheller, D.S.: The initiation of melt fragmentation in fuel-coolant interactions. Nucl. Sc. Engineering 72, 347–356 (1979)

    Google Scholar 

  • Dullforce, T.A., Buchanan, D., Peckover, R.S.: Self-triggering of small scale fuel-coolant interaction: I. Experiments. Journal of Physics D: Applied Physics 9, 1295–1303 (1986)

    Article  Google Scholar 

  • Ellison, P.G., Hyder, M.L., Monson, P.R., DeWald Jr., A.B., Long, T.A., Epstein, M.: Aluminium-uranium fuel-melt behavior during severe nuclear reactor accidents. Nuclear Safety 34(2), 196–212 (1993)

    Google Scholar 

  • Epstein, M.: Underwater vapor phase burning of aluminium particles and on aluminium ignition during steam explosions. WSRC-RP-91-1001, Westinghouse Savannah River Co (August 1991)

    Google Scholar 

  • Epstein, M., Fauske, K.: Steam film instability and the mixing of core-melt jets and water. In: ANS Proceedings, National Heat Transfer Conference, Denver, Colorado, August 4-7, pp. 277–284 (1985)

    Google Scholar 

  • Fauske, H.K.: On the mechanism of uranium dioxide-sodium explosive interactions. Nuclear Science and Engineering 51, 95–101 (1973)

    Google Scholar 

  • Fedorovich, E.D., Rohsenow, W.M.: The effect of vapor subcooling on film condensation of metals. Int. J. of Heat Mass Transfer 12, 1525–1529 (1968)

    Article  Google Scholar 

  • Fletcher, D.F., Thyagaraja, A.: A mathematical model of melt/water detonation. Appl. Math. Modelling 13, 339–347 (1989)

    Article  MATH  Google Scholar 

  • Froehlich, G.: Propagation of fuel-coolant interactions in multi-jet experiments with molten tin. Nuclear Engineering and Design 131, 209–221 (1991)

    Article  Google Scholar 

  • Frost, D.L., Ciccarelli, G.: Propagation of explosive boiling in molten tin-water mixtures. In: Jacobs, H.R. (ed.) Proc. Nat. Heat Transfer Conference, HDT 1996, Houston, Texas, July 24-27, vol. 2, pp. 539–574 (1988)

    Google Scholar 

  • Gelfand, B.E., Gubin, S.A., et al.: Influence of gas density on breakup of bubbles. Dokl. USSR Ac. Sci. 235(2), 292–294 (1977)

    Google Scholar 

  • Gibson, D.C.: Cavitation adjacent to plane boundaries. In: Proc. Australian Conf. On Hydraulic and Fluid Machinery, IEAust Sydney, pp. 210–214 (1968)

    Google Scholar 

  • Gibson, D.C., Blacke, J.R.: The growth and collapse of bubbles near deformable surface. App. Sci. Res. 38, 215–224 (1982)

    Article  Google Scholar 

  • Hansson, R.C., Park, H.S., Dinh, T.N.: Dynamics and preconditioning in a single drop vapour explosion. In: The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Nuclear Technology, Pittsburgh, Pennsylvania, USA, September 30-October 4, 2007, vol. 167, pp. 223–234 (2009)

    Google Scholar 

  • Henkel, P.: Hüllrohrmaterialbewegung während eines Kühlmittelverluststörfalls in einem schnellen, natriumgekühlten Reaktor. Dissertation, Kernforschungszentrum Karlsruhe (1987)

    Google Scholar 

  • Henry, R.E., Fauske, H.K.: A different approach to fragmentation in steam explosions. In: Proc. of the ASME-JSME 4th International Conference on Nuclear Engineering ASME 1996, New Orleans, Louisiana USA, March 10-14, vol. 1, Part A, pp. 309–316 (1996)

    Google Scholar 

  • Hertz, H.: Wied. Ann. 17, 193 (1882)

    Google Scholar 

  • Hohmann, H., Magalon, D., Huhtiniemi, I., Annunziato, A., Yerkess, A.: Recent results in FARO/KROTOS test series. In: Trans. 23rd WRSIM, Bethesda MD (October 1995)

    Google Scholar 

  • Huhtiniemi, I., Magalon, D., Hohmann, H.: Results of recent KROTOS FCI tests: alumna vs. corium melts. In: OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, Japan, May 19-21 (1997)

    Google Scholar 

  • Incopera, F.P., DeWitt, D.P.: Fundamentals of heat and mass transfer, 5th edn. John Wiley & Sons, New York (2002)

    Google Scholar 

  • Inoue, A., Aritomi, M.: An analytical model on vapor explosion of a high temperature molten metal droplet with water induced by a pressure pulse. In: Müller, U., Rehme, K., Rust, K. (eds.) Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, G. Braun, Karlsruhe, October 10-13, p. 274 (1989)

    Google Scholar 

  • Kammer, C.: Aluminium-Taschenbuch, Bd.1 Grundlagen und Wekstoffe, Herausgeber: Aluminium-Zentrale Düsseldorf, Aluminium-Verlag Düsseldorf (1995)

    Google Scholar 

  • Kim, B.J., Corradini, M.L.: Recent film boiling calculations: implication on fuel-coolant interactions. Int. J. Heat Mass Transfer 29, 1159–1167 (1986)

    Article  Google Scholar 

  • Kim, B., Corradini, M.: Modeling of small scale single droplet fuel/coolant interactions. Nucl. Sci. Eng. 98, 16–28 (1988)

    Google Scholar 

  • Kim, H., Krueger, J., Corradini, M.L.: Single droplet vapor explosions: effect of coolant viscosity. In: Müller, U., Rehme, K., Rust, K. (eds.) Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, G. Braun, Karlsruhe, October 10-13, p. 261 (1989)

    Google Scholar 

  • Knowles, J.B.: A mathematical model of vapor film destabilization. Report AEEW-R-1933 (1985)

    Google Scholar 

  • Knudsen, M.: Ann. Physik 47, 697 (1915)

    Google Scholar 

  • Kolev, N.I.: Verification of the IVA4 Film boiling model with the data base of Liu and Theofanous. In: Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI), JAERI-Tokai Research Establishment, Japan, May 19-21 (1997)

    Google Scholar 

  • Kornfeld, M., Suvorov, L.: J. Appl. Physics 15, 495–506 (1944)

    Article  Google Scholar 

  • Koshizuka, S., Ikeda, H., Oka, Y.: Effect of Spontaneous Nucleation on Melt Fragmentation in Vapor Explosions. In: Proc. of the Int. Seminar on Vapor Explosions and Explosive Eruptions, Sendai, Japan, May 22-25, pp. 185–192 (1997)

    Google Scholar 

  • Kowal, M.G., Dowling, M.F., Abdel-Khalik, S.I.: An experimental investigation of the effects of surfactants on the severity of vapor explosions. Nuclear Science and Engineering 115, 185–192 (1993)

    Google Scholar 

  • Langmuir, I.: Physik. Z. 14, 1273 (1913)

    Google Scholar 

  • Langmuir, I., Jones, H.A., Mackay, G.M.J.: Physic. Rev. 30, 201 (1927)

    Google Scholar 

  • Lide, D.R., Frederikse, H.P.R. (eds.): CRC Handbook of chemistry and physics, 8th edn. CRC Press, New York (1997)

    Google Scholar 

  • Magalon, D., Huhtiniemi, I., Hohmann, H.: Lessons learnt from FARO/TERMOS corium melt quenching experiments. In: OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, Japan, May 19-21 (1997)

    Google Scholar 

  • Marangoni, C.G.M.: Ãœber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann. Phys. 143, 337 (1871)

    Google Scholar 

  • Matsumura, K., Nariai, H.: The occurrence condition of spontaneous vapor explosions. In: Int. Conf. on Nuclear Engineering ICONE-4, ASME 1996, New Orleans, Louisiana, March 10-14, vol. 1, Part A, pp. 325–332 (1996)

    Google Scholar 

  • Matzke, H.: Status of FARO debris analysis by ITU. In: 9th FARO Expert Meeting, Karlsruhe, Ispra, September 28-29 (1998)

    Google Scholar 

  • Medhekar, S., Amarasooriya, W.H., Theofanous, T.G.: Integrated analysis of steam explosions. In: Müller, U., Rehme, K., Rust, K. (eds.) Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, G. Braun, Karlsruhe, October 10-13, pp. 319–326 (1989)

    Google Scholar 

  • Merzhanov, A.G., Grigoriev, Y.M., Gal’chenko, Y.A.: Aluminium ignition. Combustion Flame 29, 1 (1977)

    Article  Google Scholar 

  • Mills, A.F.: The condensation of steam at low pressure. Techn. Report Series No. 6(39) Space Sciences Laboratory, University of California, Berkeley (1967)

    Google Scholar 

  • Mills, A.F., Seban, R.A.: The condensation coefficient of water. J. of Heat Transfer 10, 1815–1827 (1967)

    Article  Google Scholar 

  • Mitsumura, K., Nariai, H., Egashira, Y., Ochimizu, M.: Experimental study on the base triggered spontaneous vapor explosions for molten tin-water system. In: Proc. of the Int. Seminar on Vapor Explosions and Explosive Eruptions, Sendai, Japan, May 22-25, pp. 27–32 (1997)

    Google Scholar 

  • Nabavian, K., Bromley, L.A.: Condensation coefficient of water. Chem. Eng. Sc. 18, 651–660 (1963)

    Article  Google Scholar 

  • Naylor, P.: Film boiling destabilization. Ph.D. Thesis, University of Exeter (1985)

    Google Scholar 

  • Nelson, L.S., Buxton, L.D.: Steam explosion triggering phenomena: stainless steel and Corium-E simulants studied with a floodable arc melting apparatus. SAN77 - 0998, NUREG/CR-01222, Sandia National Laboratories (1980)

    Google Scholar 

  • Nelson, L.S., Duda, P.M.: Steam explosion experiments with single drops of iron-oxide melted with CO2 laser. SAND81-1346, NUREG/CR-2295, Sandia National Laboratory (1981)

    Google Scholar 

  • Nelson, L.S., Guay, K.P.: Suppression of steam explosion in tin and FeAl2O3 melts by increasing the viscosity of the coolant. High Temperature and High Pressures 18, 107–111 (1986)

    Google Scholar 

  • Nelson, L.S., Hyndman, D.A., Duda, P.M.: Steam explosions of single drops of core-melt simulants: Triggering, work output and Hydrogen generation. In: Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21-25, pp. 324–330 (1991)

    Google Scholar 

  • Ohnesorge, W.: Die Bildung von Tröpfen an Düsen und die Auflüssiger Strahlen. Z. Angew. Math. Mech. 16, 335–359 (1936)

    Article  Google Scholar 

  • Ostrach, S.: Low gravity fluid flows. Ann. Rev. Fluid Mech. 14, 313–345 (1982)

    Article  Google Scholar 

  • Peppler, W., Till, W., Kaiser, A.: Experiments on Thermal Interactions: Tests with Al2O3 Droplets and Water, Kernforschungszentrum Karlsruhe, KfK 4981 (September 1991)

    Google Scholar 

  • Pilch, M., Erdman, C.A., Reynolds, A.B.: Acceleration induced fragmentation of liquid drops. Department of Nucl. Eng., University of Virginia, Charlottesville, VA, NUREG/CR-2247 (August 1981)

    Google Scholar 

  • Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J. of Fluid Mechanics 47(2), 283–290 (1971)

    Article  Google Scholar 

  • Saito, M., Sato, K., Imahori, S.: Experimental study on penetration behaviours on water jet into Freon-11 and liquid nitrogen. In: Jacobs, H.R. (ed.) ANS Proc. Nat. Heat Transfer Conference, HTC, Houston, Texas, July 24-27, vol. 3 (1998)

    Google Scholar 

  • Schröder-Richter, D., Bartsch, G.: The Leidenfrost phenomenon caused by a thermo-mechanical effect of transition boiling: A revisited problem of non-equilibrium thermodynamics. In: Witte, L.C., Avedisian, C.T. (eds.) Fundamentals of Phase Change: Boiling and Condensation, HTD, vol. 136, pp. 13–20, Book No. H00589-1990 (1990)

    Google Scholar 

  • Shpil’rain, E.E., Yakimovich, K.A., Tsitsarkin, A.F.: Experimental study of the density of liquid alumina up to 2750 C. High Temperatures - High Pressures 5, 191–198 (1973)

    Google Scholar 

  • Spencer, B.W., et al.: Corium quench in deep pool mixing experiments. In: ANS Proceedings, National Heat Transfer Conference, Denver, Colorado, August 4-7, pp. 267–276 (1985)

    Google Scholar 

  • Taleyarkhan, R.: Steam-explosion safety consideration for the advanced neutron source reactor at the Oak Ridge National Laboratory. ORNL/TM-11324 (February 1990)

    Google Scholar 

  • Tang, J.: A complete model for the vapor explosion process. PhD Thesis, University of Wisconsin, Madison WI (1993)

    Google Scholar 

  • Taylor, G.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  • Thomson, J.: On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Philosophical Magazine and Journal of Science X- Fourth Series, 330–333 (1855)

    Google Scholar 

  • Turbill, D., Fisher, J.C.: Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71 (1949)

    Article  Google Scholar 

  • Uludogan, A., Corradini, M.L.: Modeling of molten metal/water interactions. Nuclear Technology 109, 171–186 (1995)

    Google Scholar 

  • Voinov, O.V., Voinov, V.V.: Numerical method of calculating non-stationary motions of ideal incompressible fluid with free surface. Sov. Phys. Dokl. 20, 179–18091 (1975)

    MATH  Google Scholar 

  • Yerkess: TEXAS-IV Dynamic fragmentation model, private communication. In: 8th FARO Expert Meeting, Ispra, Italy (1997)

    Google Scholar 

  • Young, M.F.: Application of the IFCI Integrated fuel-coolant interaction code to a fits-type pouring mode experiment. SAND89-1692C (1990)

    Google Scholar 

  • Young, M.F.: IFCI: An integrated code for calculation of all phases of fuel coolant interaction. NUREG/CR-5084, SAND87-1048 (September 1987)

    Google Scholar 

  • Yuen, W.W., Chen, X., Theofanous, T.G.: On the fundamental micro-interactions that support the propagation of steam explosions. NED 146, 133–146 (1994)

    Google Scholar 

  • Zimanowski, B., Fröhlich, G., Lorenz, V.: Experiments on steam explosion by interaction of water with silicate melts. NED 155, 335–343 (1995)

    Google Scholar 

  • Zimmer, H.J., Peppler, W., Jacobs, H.: Thermal fragmentation of molten alumina in sodium. In: Müller, U., Rehme, K., Rust, K. (eds.) Proceedings Fourth International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, G. Braun, Karlsruhe, October 10-13, p. 268 (1989)

    Google Scholar 

  • Zyskowski, W.: Thermal interaction of molten copper with water. Int. J. of Heat and Mass Transfer 18, 271–287 (1975)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Fragmentation of melt in coolant. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20598-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20598-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20597-2

  • Online ISBN: 978-3-642-20598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics