Skip to main content

Liquid and gas jet disintegration

  • Chapter
Multiphase Flow Dynamics 2
  • 3028 Accesses

Liquid jet disintegration in pools

The mathematical description of jet breakup has attracted the attention of outstanding scientists in the past. Lord Rayleigh analyzed for the first time in 1878 the instability of jets. Nils Bohr extended Rayleigh’s analysis to include viscous effects, in a prize-winning paper on the evaluation of surface tension in 1909. Constantin Weber went on to obtain the breakup length for a viscous jet in 1936. In 1936 after his experimental observation with a high-speed camera (200 to 12000 frames per second) Wolfgang von Ohnesorge classified four different regimes of jet breakup, introduced a dimensionless number quantifying the properties of the jet, and described successfully two jet transition boundaries. Weber in 1936 and later Taylor in Batchelor (1958) introduced in addition to the previous analyses the influence of the environment on jet breakup. These are the fundamental works in jet fragmentation theory used in almost all later works on this topic. In recent times nozzle geometry has been found to strongly influence jet dynamics. Geometries not allowing the establishment of a turbulent boundary layer produce more stable jets than those that promote turbulent boundary layers at the jet interface – see Iciek (1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G.K. (ed.): Collected works of Taylor GI. Cambridge Univ. Press, Cambridge (1958)

    Google Scholar 

  • Bohr, N.: Determination of the surface-tension of water by method of jet vibration. Phill. Trans. Roy. Soc. London, Series A. 209, 281 (1909)

    Article  MATH  Google Scholar 

  • Bracco, F.V.: Modeling of engine sprays. In: Proc. International Congress & Exposition Detroit, Michigan, February- 25 March 1, pp. 113–136 (1985)

    Google Scholar 

  • Buerger, M., von Berg, E., Cho, S.H., Schatz, A.: Modeling of jet breakup as a key process in premixing. In: Proc. of the Int. Seminar on The Physics of Vapor Explosions, Tomakomai, October 25-29, pp. 79–89 (1993)

    Google Scholar 

  • Chawla, T.C.: The Kelvin-Helmholtz instability of the gas-liquid interface. J. Fluid Mechanics 67(3), 513–537 (1975)

    Article  MATH  Google Scholar 

  • Chawla, T.C.: Drop size resulting from breakup of liquid-gas interfaces of liquid submerged subsonic and sonic gas jets. Int. J. Multiphase Flow, 471–475 (1976)

    Google Scholar 

  • Darton, R.C., La Nauze, R.D., Davidson, J.F., Harrison, D.: Bubble growth due to coalescence in fluidized beds. Trans. I. Chem. E. 55, 274–280 (1977)

    Google Scholar 

  • Davidson, J.F., Harrison, D.: Fluidized particles. Cambridge University Press, London (1963)

    Google Scholar 

  • De Jarlais, G., Ishii, M., Linehan, J.: Hydrodynamic stability of inverted annular flow in an adiabatic simulation. Transactions of ASME, Journal of Heat Transfer 108, 85–92 (1986)

    Google Scholar 

  • Epstein, M., Fauske, K.: Steam film instability and the mixing of core-melt jets and water. In: ANS Proceedings, National Heat Transfer Conference, Denver, Colorado, August 4-7, pp. 277–284 (1985)

    Google Scholar 

  • Estes, K.A., Mudawar, I.: Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces. International Journal of Heat and Mass Transfer 38(16), 2985–2996 (1995)

    Article  Google Scholar 

  • Faeth, G.M.: Spray combustion: a review. In: Proc. of The 2nd International Conference on Multiphase Flow, Kyoto, Japan, April 3-7 (1995)

    Google Scholar 

  • Fenn III, R.W., Middleman, S.: Newtonian jet stability: The role of air resistance. A.I.Ch.E. Journal 15(3), 379–383 (1969)

    Google Scholar 

  • Fritz, W., Ende, W.: Über den Verdampfungsvorgang nach kinematographischen Aufnahmen an Dampfblasen. Phys. Z. 37, 391–401 (1966)

    Google Scholar 

  • Geary, N.W., Rice, R.G.: Bubble size prediction for rigid and flexible sparkers. A.I.Ch.E. Journal 37(2), 161–168 (1991)

    Google Scholar 

  • Gelfand, B.E., Gubin, S.A., et al.: Breakup of air bubbles in liquid. Dokl. USSR Ac. Sci. 220(4), 802–804 (1975)

    Google Scholar 

  • Ghodbane, M., Holman, J.P.: Experimental study of spray cooling with Freon-113. International Journal of Heat and Mass Transfer 34(4/5), 1163–1174 (1991)

    Article  Google Scholar 

  • Grant, R.P., Middleman, S.: Newton Jet Stability. AIChEJ 12(4), 669 (1966)

    Article  Google Scholar 

  • Iciek, J.: The hydrodynamics of a free, liquid jet and their influence on direct contact heat transfer - I and II. Int. J. Multiphase Flow 8(3), 239–260 (1982)

    Article  Google Scholar 

  • Kutateladze, S.S., Styrikovich, M.A.: Hydraulics of gas-liquid systems, Moscow, Wright Field transl. F-TS-9814/V (1958)

    Google Scholar 

  • Lienhard, J.H., Day, J.B.: The breakup of superheated liquid Jets. ASME J. Basic Eng. 92, 511–522 (1970)

    Google Scholar 

  • Mayer, E.: Theory of liquid atomization in high velocity gas streams. ARS Journal 31, 1785–1787 (1961)

    Google Scholar 

  • Meister, B.J., Scheele, G.F.: A.I.Ch.E. J. 15, 689-699 (1969)

    Google Scholar 

  • Merrington, A.C., Richardson, E.G.: The breakup of liquids jets. Proc. Phys. Soc. 59, 1–13 (1947)

    Article  Google Scholar 

  • Nigmatulin, B.I., Melikhov, O.I., Melikhov, V.I.: Breakup of liquid jets in film boiling. In: Proc. of Int. Sem. on The Physics of Vapor Explosions, Tomakomi, October 25-29, pp. 90–95 (1993)

    Google Scholar 

  • Ohnesorge, W.: Die Bildung von Tröpfen an Düsen und die Auflüssiger Strahlen. Z. Angew. Math. Mech. 16, 335–359 (1936)

    Article  Google Scholar 

  • Rayleigh, L.: On the instability of jets. Proc. London Math. Soc. 10, 7 (1878)

    Google Scholar 

  • Ruft, K.: Bildung von Gasblasen an Düsen bei konstantem Volumendurchsatz. Chemie-Ing. Techn. 44(24), 1360–1366 (1972)

    Article  Google Scholar 

  • Saito, M., Sato, K., Imahori, S.: Experimental study on penetration behaviors of water jet into Freon-11 and Liquid Nitrogen. In: ANS Proc. 1988 Nat. Heat Transfer Conference, Houston, Texas, July 24-July 27, HTS-vol. 3, pp. 173–183 (1988)

    Google Scholar 

  • Schneider, J.P., Marchiniak, M.J., Jones, B.G.: Breakup of metal jets penetrating a volatile liquid. In: Proc. of the Fifth Int. Top. Meeting On Reactor Thermal Hydraulics NURETH-5, September 21-24, vol. 2, pp. 437–449 (1992)

    Google Scholar 

  • Smith, S.W.J., Moss, H.: Experiments with mercury jets. Proc. Roz. Soc. A/93, 373–393 (1917)

    Article  Google Scholar 

  • Sun, P.H.: Molten fuel-coolant interactions induced by coolant injection into molten fuel. In: SARJ 1998: The Workshop on Severe Accident Research, Tokyo, Japan, November 4-6 (1998)

    Google Scholar 

  • Takahashi, T., Kitamura, Y.: Kogaku Kogaku 35, 637 (1971)

    Google Scholar 

  • Takahashi, T., Kitamura, Y.: Kogaku Kogaku 36, 912 (1972)

    Google Scholar 

  • Tanzawa, Y., Toyoda, S.: Trans. J.S.M.E. 20, 306 (1954)

    Google Scholar 

  • Teng, H., Kinoshita, C.M., Masutani, S.M.: Prediction of droplet size from the breakup of cylindrical liquid jets. Int. J. Multiphase Flows 21(1), 129–136 (1995)

    Article  MATH  Google Scholar 

  • Thimotika, H.: Proc. Roy. Soc.150, 322 (1935); 153, 302 (1936)

    Google Scholar 

  • Weber, C.: Zum Zerfall eines Flüssigketsstrahles. Z. Angew. Math. Mech. 11, 136–154 (1936)

    Article  Google Scholar 

  • Wolfe, H.E., Anderson, W.H.: Aerodynamic breakup of liquid drops II. Experimental. In: Proc. Int. Shock Tube Symposium, Naval Ordinance Lab, White Oak, Maryland, USA (1965)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Liquid and gas jet disintegration. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20598-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20598-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20597-2

  • Online ISBN: 978-3-642-20598-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics