Skip to main content

Multi-Walled Carbon Nanotubes

  • Chapter

Part of the Springer Handbooks book series (SHB)

Abstract

Multi-walled carbon nanotubes (MWCNTs) are elongated cylindrical nanoobjects made of sp2 carbon. Their diameter is 3–30 nm and they can grow several cm long, thus their aspect ratio can vary between 10 and ten million. They can be distinguished from single-walled carbon nanotubes on the basis of their multi-walled Russian-doll structure and rigidity, and from carbon nanofibers on the basis of their different wall structure, smaller outer diameter, and hollow interior. This chapter introduces MWCNT synthesis methods, discusses the chemistry and properties of multi-walled carbon nanotubes, and gives examples of their application. References to single-walled carbon nanotubes (SWNT) are kept at a minimum.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20595-8_5
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-20595-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

AM:

alveolar macrophage

BSI:

British Standards Institution

CCVD:

catalytic chemical vapor deposition

CNF:

carbon nanofiber

CNT:

carbon nanotube

CTAB:

cetyltrimethylammonium bromide

CVD:

chemical vapor deposition

DC:

direct current

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

DNA:

deoxyribonucleic acid

DTAB:

dodecyltrimethylammonium bromide

EPITH:

epithelial cells

EPR:

electron paramagnetic resonance

ESR:

electron spin resonance

GN:

gold nanoparticle

HCCN:

highly curved carbon nanostructure

HPSMAP:

poly(styrene-co-maleic anhydride) carrying pyrene

HRTEM:

high-resolution transmission electron microscopy

HSMA:

hydrolyzed poly(styrene-co-maleic) anhydrite

IR:

infrared

LYM:

lymphocytes

MWCNT:

multiwalled carbon nanotube

MWNT:

multiwalled nanotubes

NADH:

nicotinamide adenine dinucleotide

NEUT:

neutrophils

NIOSH:

National Institute for Occupational Safety and Health

NMR:

nuclear magnetic resonance

NT:

nanotube

PAN:

polyacrylonitrile

PDGF:

platelet-derived growth factor

PDMS:

polydimethylsiloxane

PECVD:

plasma-enhanced CVD

PEL:

permissible occupational exposure limit

PL:

photoluminescence

RNA:

ribonucleic acid

S/L:

solid/liquid

SDBS:

sodium dodecylbenzene sulfate

SDS:

sodium dodecyl sulfate

SEC:

size exclusion chromatography

SEM:

scanning electron microscopy

SOCT:

sodium octanoate

SWCNT:

single-walled carbon nanotube

SWNT:

single-walled nanotube

TEM:

transmission electron microscopy

THF:

tetrahydrofuran

UV:

ultraviolet

WC:

tungsten carbide

XPS:

x-ray photoelectron spectroscopy

XRD:

x-ray diffraction

mRNA:

messenger RNA

pp:

peak-to-peak

References

  1. L. Forro, C. Schonenberger: Physical properties of multi-wall nanotubes, Carbon Nanotubes 80, 329–390 (2001)

    CAS  CrossRef  Google Scholar 

  2. R. Andrews, D. Jacques, D.L. Qian, T. Rantell: Multiwall carbon nanotubes, synthesis and application, Acc. Chem. Res. 35(12), 1008–1017 (2002)

    CAS  CrossRef  Google Scholar 

  3. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier: Evaluating the characteristics of multiwall carbon nanotubes, Carbon 49(8), 2581–2602 (2011)

    CAS  CrossRef  Google Scholar 

  4. P.M. Ajayan: Nanotubes from carbon, Chem. Rev. 99(7), 1787–1799 (1999)

    CAS  CrossRef  Google Scholar 

  5. M. Monthioux, E. Flahaut, J.P. Cleuziou: Hybrid carbon nanotubes, strategy, progress, and perspectives, J. Mater. Res. 21(11), 2774–2793 (2006)

    CAS  CrossRef  Google Scholar 

  6. L.V. Radushkevich, V.M. Lukyanovich: Carbon structure formed under thermal decomposition of carbon monoxid on iron, Zh. Fiz. Khim. 26, 88–95 (1952)

    CAS  Google Scholar 

  7. S. Iijima: Helical microtubules of graphitic carbon, Nature 354(6348), 56–58 (1991)

    CAS  CrossRef  Google Scholar 

  8. S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363(6430), 603–605 (1993)

    CAS  CrossRef  Google Scholar 

  9. D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls, Nature 363(6430), 605–607 (1993)

    CAS  CrossRef  Google Scholar 

  10. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman: C60: A new form of carbon, Nature 347, 354–358 (1990)

    CrossRef  Google Scholar 

  11. Y.E. Lozovik, A.M. Popov: Formation and growth of carbon nanostructures, fullerenes, nanoparticles, nanotubes and cones, Usp. Fiz. Nauk. 167(7), 751–774 (1997)

    CAS  CrossRef  Google Scholar 

  12. T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358(6383), 220–222 (1992)

    CAS  CrossRef  Google Scholar 

  13. S.H. Jung, M.R. Kim, S.H. Jeong, S.U. Kim, O.J. Lee, K.H. Lee, J.-H. Suh, C.-K. Park: High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen, Appl. Phys. A 76(2), 285–286 (2003)

    CAS  CrossRef  Google Scholar 

  14. K. Anazawa, K. Shimotani, C. Manabe, H. Watanabe, M. Shimizu: High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field, Appl. Phys. Lett. 81(4), 739–741 (2002)

    CAS  CrossRef  Google Scholar 

  15. N. Hatta, K. Murata: Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene, Chem. Phys. Lett. 21, 217(4), 398–402 (1994)

    CAS  Google Scholar 

  16. D.T. Colbert, J. Zhang, S.M. McClure, P. Nikolaev, Z. Chen, J.H. Hafner, D.W. Owens, P.G. Kotula, C.B. Carter, J.H. Weaver, A.G. Rinzler, R.E. Smalley: Growth and sintering of fullerene nanotubes, Science 266(5188), 1218–1222 (1994)

    CAS  CrossRef  Google Scholar 

  17. S.J. Lee, H.K. Baik, J.E. Yoo, J.H. Han: Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique, Diam. Relat. Mater. 11(3–6), 914–947 (2002)

    CAS  Google Scholar 

  18. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley: Crystalline ropes of metallic carbon nanotubes, Science 273(5274), 483–487 (1996)

    CAS  CrossRef  Google Scholar 

  19. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 243(1/2), 49–54 (1995)

    CAS  CrossRef  Google Scholar 

  20. S. Iijima, T. Wakabayashi, Y. Achiba: Structures of carbon soot prepared by laser ablation, J. Phys. Chem. 100(14), 5839–5843 (1996)

    CAS  CrossRef  Google Scholar 

  21. T. Wakabayashi, D. Kasuya, H. Shiromaru, S. Suzuki, K. Kikuchi, Y.Z. Achiba: Towards the selective formation of specific isomers of fullerenes: T- and p dependence in the yield of various isomers of C60–C84, Phys. D 40, 414–417 (1997)

    CAS  CrossRef  Google Scholar 

  22. N. Bajwa, X.S. Li, P.M. Ajayan, R. Vajtai: Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes, J. Nanosci. Nanotechnol. 8(11), 6054–6064 (2008)

    CAS  CrossRef  Google Scholar 

  23. V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt: The study of carbon nanotubules produced by catalytic method, Chem. Phys. Lett. 223(4), 329–335 (1994)

    CAS  CrossRef  Google Scholar 

  24. M. Endo, H.W. Kroto: Formation of carbon nanofibers, J. Phys. Chem. 96(17), 6941–6944 (1992)

    CAS  CrossRef  Google Scholar 

  25. M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura, E. Ota: Specific conditions for Ni catalyzed carbon nanotube growth by chemical-vapor-deposition, Appl. Phys. Lett. 67(17), 2477–2479 (1995)

    CAS  CrossRef  Google Scholar 

  26. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A.A. Lucas: Fe-catalyzed carbon nanotube formation, Carbon 34(10), 1249–1257 (1996)

    CAS  CrossRef  Google Scholar 

  27. K. Hernadi, A. Fonseca, P. Piedigrosso, M. Delvaux, J.B. Nagy, D. Bernaerts, D. Riga: Carbon nanotubes production over Co/silica catalysts, Catal. Lett. 48(3–4), 229–238 (1997)

    CAS  CrossRef  Google Scholar 

  28. H.Q. Hou, Z. Jun, F. Weller, A. Greiner: Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor, Chem. Mater. 15(16), 3170–3175 (2003)

    CAS  CrossRef  Google Scholar 

  29. J. Liu, A.T. Harris: Synthesis of coiled carbon nanotubes on Co/Al2O3 catalysts in a fluidised-bed, J. Nanopart. Res. 12(2), 645–653 (2010)

    CAS  CrossRef  Google Scholar 

  30. D. Fejes, K. Hernadi: A review of the properties and CVD synthesis of coiled carbon nanotubes, Materials 3(4), 2618–2642 (2010)

    CAS  CrossRef  Google Scholar 

  31. T. Somanathan, A. Pandurangan: Helical multiwalled carbon nanotubes (h-MWCNTs) synthesized by catalytic chemical vapor deposition, New Carbon Mater. 25(3), 175–180 (2010)

    CAS  CrossRef  Google Scholar 

  32. A.R. Harutyunyan, T. Tokune, E. Mora: Liquid as a required catalyst phase for carbon single-walled nanotube growth, Appl. Phys. Lett. 87(5), 051919 (2005)

    CrossRef  CAS  Google Scholar 

  33. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang: Large-scale synthesis of aligned carbon nanotubes, Science 274(5293), 1701–1703 (1996)

    CAS  CrossRef  Google Scholar 

  34. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio: Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282(5391), 1105–1107 (1998)

    CAS  CrossRef  Google Scholar 

  35. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283(5401), 512–514 (1999)

    CAS  CrossRef  Google Scholar 

  36. H. Kind, J.M. Bonard, C. Emmenegger, L.O. Nilsson, K. Hernadi, E. Maillard-Schaller, L. Schlappbach, L. Forro, K. Kern: Patterned films of nanotubes using microcontact printing of catalysts, Adv. Mater. 11(15), 1285 (1999)

    CAS  CrossRef  Google Scholar 

  37. M. Yudasaka, R. Kikuchi, Y. Ohki, S. Yoshimura: Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition, Carbon 35(2), 195–201 (1997)

    CAS  CrossRef  Google Scholar 

  38. M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, E. Ota, S. Yoshimura: Graphite film formation by chemical vapor deposition on Ni coated sapphire, Carbon 34(6), 763–767 (1996)

    CrossRef  Google Scholar 

  39. T. Kyotani, L.F. Tsai, A. Tomita: Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8(8), 2109–2113 (1996)

    CAS  CrossRef  Google Scholar 

  40. D. Chen, L. Chen, S. Liu, C.X. Ma, D.M. Chen, L.B. Wang: Microstructure and hydrogen storage property of Mg/MWNTs composites, J. Alloys Compd. 372(1/2), 231–237 (2004)

    CAS  CrossRef  Google Scholar 

  41. D.M. Chen, T. Ichikawa, H. Fujii, N. Ogita, M. Udagawa, Y. Kitano, E. Tanabe: Unusual hydrogen absorption properties in graphite mechanically milled under various hydrogen pressures up to 6 MPa, J. Alloy Compd. 354(1/2), L5–L9 (2003)

    CAS  CrossRef  Google Scholar 

  42. L.T. Chadderton, Y. Chen: Nanotube growth by surface diffusion, Phys. Lett. A 263(4–6), 401–405 (1999)

    CAS  CrossRef  Google Scholar 

  43. D.E. Smeulders, A.S. Milev, G.S.K. Kannangara, M.A. Wilson: Rod milling and thermal annealing of graphite: Passing the equilibrium barrier, J. Mater Sci. 40(3), 655–662 (2005)

    CAS  CrossRef  Google Scholar 

  44. Y. Li, X.B. Zhang, X.Y. Tao, J.M. Xu, W.Z. Huang, J.H. Luo, Z.Q. Luo, T. Li, F. Liu, Y. Bao, H.J. Geise: Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst, Carbon 43(2), 295–301 (2005)

    CAS  CrossRef  Google Scholar 

  45. J.L. Li, L.J. Wang, G.Z. Bai, W. Jiang: Carbon tubes produced during high-energy ball milling process, Scr. Mater. 54(1), 93–97 (2006)

    CAS  CrossRef  Google Scholar 

  46. M. Drofenik, D. Makovec, A. Košak, M. Kristl: Synthesis of carbon nanostructures with mechanical alloying. In: Progress in Advanced Materials and Processes, ed. by D.P. Uskokovic, S.K. Milonjic, D.J. Rakovic (Trans Tech., Zurich-Uetikon 2004) pp. 213–217

    Google Scholar 

  47. J.Y. Huang: HRTEM and EELS studies of defects structure and amorphous-like graphite induced by ball-milling, Acta Mater. 47(6), 1801–1808 (1999)

    CAS  CrossRef  Google Scholar 

  48. T.M. Keller, S.B. Qadri: Ferrocenylethynylbenzenes as precursors to in situ synthesis of carbon nanotube and Fe nanoparticle compositions, Chem. Mater. 16(6), 1091–1097 (2004)

    CAS  CrossRef  Google Scholar 

  49. C.N.R. Rao, A. Govindaraj, R. Sen, B.C. Satishkumar: Synthesis of multi-walled and single-walled nanotubes, aligned- nanotube bundles and nanorods by employing organometallic precursors, Mater. Res. Innov. 2(3), 128–141 (1998)

    CAS  CrossRef  Google Scholar 

  50. R. Sen, A. Govindaraj, C.N.R. Rao: Carbon nanotubes by the metallocene route, Chem. Phys. Lett. 267(3–4), 276–280 (1997)

    CAS  CrossRef  Google Scholar 

  51. G.D. Nessim: Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition, Nanoscale 2(8), 1306–1323 (2010)

    CAS  CrossRef  Google Scholar 

  52. D. Ugarte: Morphology and structure of graphitic soot particles generated in arc-discharge C60 production, Chem. Phys. Lett. 198(6), 596–602 (1992)

    CAS  CrossRef  Google Scholar 

  53. A.V. Eletskii, B.M. Smirnov: Fullerenes and the structure of carbon, Usp Fiz Nauk. 165, 977–1009 (1995)

    CAS  CrossRef  Google Scholar 

  54. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi: Growth and structure of graphitic tubules and polyhedral particles in arc-discharge, Chem. Phys. Lett. 204(3–4), 277–282 (1993)

    CAS  CrossRef  Google Scholar 

  55. Y.E. Lozovik, A.M. Popov: Carbon spheric nanoparticles – possible formation mechanism, Phys. Lett. A 189(1/2), 127–130 (1994)

    CAS  CrossRef  Google Scholar 

  56. P.M. Ajayan, T. Ichihashi, S. Iijima: Distribution of pentagons and shapes in carbon nanotubes and nanoparticles, Chem. Phys. Lett. 202(5), 384–388 (1993)

    CAS  CrossRef  Google Scholar 

  57. T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki: Purification of nanotubes, Nature 367(6463), 519 (1994)

    CrossRef  Google Scholar 

  58. M.H. Ge, K. Sattler: Scanning-tunneling-microscopy of vapor-phase grown nanotubes of carbon, J. Phys. Chem. Solids 54(12), 1871–1877 (1993)

    CAS  CrossRef  Google Scholar 

  59. F.J. Derbyshire, A.E.B. Presland, D.L. Trimm: Graphite formation by dissolution-precipitation of carbon in cobalt, nickel and iron, Carbon 13(2), 111–113 (1975)

    CAS  CrossRef  Google Scholar 

  60. R.T.K. Baker, P.S. Harris: Formation of filamentous carbon. In: Chemistry and Physics of Carbon, ed. by P.L. Walker (Marcel Dekker, New York 1978) p. 83

    Google Scholar 

  61. S. Santangelo, C. Milone, M. Lanza, A. Pistone, G. Messina, G. Faggio: Scaling laws for multi-walled carbon nanotube growth by catalyzed chemical vapor deposition, J. Nanosci. Nanotechnol. 10(2), 1286–1295 (2010)

    CAS  CrossRef  Google Scholar 

  62. M. Caplovicova, T. Danis, D. Buc, L. Caplovic, J. Janik, I. Bello: An alternative approach to carbon nanotube sample preparation for TEM investigation, Ultramicroscopy 107(8), 692–697 (2007)

    CAS  CrossRef  Google Scholar 

  63. P. Ramesh, K. Sato, Y. Ozeki, M. Yoshikawa, N. Kishi, T. Sugai, H. Shinohara: Microscopic characterization of thin-multiwall carbon nanotubes synthesized by catalytic CVD method with mesoporous silica, Nano 1(3), 207–212 (2006)

    CAS  CrossRef  Google Scholar 

  64. K. Molhave, S.B. Gudnason, A.T. Pedersen, C.H. Clausen, A. Horsewell, P. Boggild: Transmission electron microscopy study of individual carbon nanotube breakdown caused by Joule heating in air, Nano Lett. 6(8), 1663–1668 (2006)

    CAS  CrossRef  Google Scholar 

  65. S.P. Sharma, S.C. Lakkad: Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique, Surf. Coat Technol. 203(10–11), 1329–1335 (2009)

    CAS  CrossRef  Google Scholar 

  66. R.F. Klie, D. Ciuparu, L. Pfefferle, Y. Zhu: Multi-walled carbon nanotubes on amorphous carbon films, Carbon 42(10), 1953–1957 (2004)

    CAS  CrossRef  Google Scholar 

  67. K. Asaka, M. Karita, Y. Saito: Joining of multiwall carbon nanotubes for the end-contact configuration by applying electric current, Mater. Lett. 65(12), 1832–1834 (2011)

    CAS  CrossRef  Google Scholar 

  68. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. A 334(1/2), 173–178 (2002)

    Google Scholar 

  69. T. Kuzumaki, Y. Mitsuda: Dynamic measurement of electrical conductivity of carbon nanotubes during mechanical deformation by nanoprobe manipulation in transmission electron microscopy, Appl. Phys. Lett. 85(7), 1250–1252 (2004)

    CAS  CrossRef  Google Scholar 

  70. H. Watanabe, Y. Hisada, S. Mukainakano, N. Tanaka: In situ observation of the initial growth process of carbon nanotubes by time-resolved high resolution transmission electron microscopy, J. Microscopy-Oxford 203, 40–46 (2001)

    CAS  CrossRef  Google Scholar 

  71. Z. Xu, X.D. Bai, E.G. Wang: Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy, Appl. Phys. Lett. 88(13), 133107 (2006)

    CrossRef  CAS  Google Scholar 

  72. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber: Diameter-controlled synthesis of carbon nanotubes, J.  Phys. Chem. B 106(10), 2429–2433 (2002)

    CAS  CrossRef  Google Scholar 

  73. A. Kukovecz, R. Smajda, Z. Kónya, I. Kiricsi: Controlling the pore diameter distribution of multi-wall carbon nanotube buckypapers, Carbon 45, 1696–1698 (2007)

    CAS  CrossRef  Google Scholar 

  74. J. Loos, N. Grossiord, C.E. Koning, O. Regev: On the fate of carbon nanotubes, morphological characterisations, Compos. Sci. Technol. 67(5), 783–788 (2007)

    CAS  CrossRef  Google Scholar 

  75. T. Yaguchi, T. Sato, T. Kamino, Y. Taniguchi, K. Motomiya, K. Tohji, A. Kasuya: A method for characterizing carbon nanotubes, J.  Electron Microsc. 50(4), 321–324 (2001)

    CAS  CrossRef  Google Scholar 

  76. L.P. Biro, N.Q. Khanh, Z. Vertesy, Z.E. Horvath, Z. Osvath, A. Koos, J. Gyulai, A. Kocsonya, Z. Konya, X.B. Zhang, G. Van Tendeloo, A. Fonseca, J.B. Nagy: Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD, Mater. Sci. Eng. C 19(1/2), 9–13 (2002)

    CrossRef  Google Scholar 

  77. R.B. Mathur, S. Seth, C. Lal, R. Rao, B.P. Singh, T.L. Dhami, A.M. Rao: Co-synthesis, purification and characterization of single- and multi-walled carbon nanotubes using the electric arc method, Carbon 45(1), 132–140 (2007)

    CAS  CrossRef  Google Scholar 

  78. E. Pellicer, A.B. Gonzalez-Guerrero, J. Nogues, L.M. Lechuga, E. Mendoza: Assessment of catalyst particle removal in multi-wall carbon nanotubes by highly sensitive magnetic measurements, Carbon 47(3), 758–763 (2009)

    CAS  CrossRef  Google Scholar 

  79. T. Braun, H. Rausch, L.P. Biro, L. Konya, I. Kiricsi: Determination of traces of elemental impurities in single walled (SWNT) and multi walled (MWNT) pristine and purified carbon nanotubes by instrumental neutron activation analysis, J. Radioanal. Nucl. Chem. 262(1), 31–34 (2004)

    CAS  CrossRef  Google Scholar 

  80. S. Osswald, M. Havel, Y. Gogotsi: Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy, J. Raman Spectroscopy 38(6), 728–736 (2007)

    CAS  CrossRef  Google Scholar 

  81. E. Mansfield, A. Kar, S.A. Hooker: Applications of TGA in quality control of SWCNTs, Anal. Bioanal. Chem. 396(3), 1071–1077 (2010)

    CAS  CrossRef  Google Scholar 

  82. R. Schönfelder, F. Avilés, A. Bachmatiuk, J.V. Cauich-Rodriguez, M. Knupfer, B. Büchner, M.H. Rümmeli: On the merits of Raman spectroscopy and thermogravimetric analysis to asses carbon nanotube structural modifications, Appl. Phys. A 106(4), 843–852 (2012)

    CrossRef  CAS  Google Scholar 

  83. L. Stobinski, B. Lesiak, L. Kover, J. Toth, S. Biniak, G. Trykowski, J. Judek: Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR, and electron spectroscopy methods, J. Alloy Compd. 501(1), 77–84 (2010)

    CAS  CrossRef  Google Scholar 

  84. R. Verdejo, S. Lamoriniere, B. Cottam, A. Bismarck, M. Shaffer: Removal of oxidation debris from multi-walled carbon nanotubes, Chem. Commun.(5), 513–515 (2007)

    Google Scholar 

  85. G.S. Duesberg, J. Muster, H.J. Byrne, S. Roth, M. Burghard: Towards processing of carbon nanotubes for technical applications, Appl. Phys. A 69(3), 269–274 (1999)

    CAS  CrossRef  Google Scholar 

  86. P.X. Hou, C. Liu, H.M. Cheng: Purification of carbon nanotubes, Carbon 46(15), 2003–2025 (2008)

    CAS  CrossRef  Google Scholar 

  87. L. Matlhoko, S.K. Pillai, M. Moodley, W.G. Augustyn, S.S. Ray: A comparison of purification procedures for multi-walled carbon nanotubes produced by chemical vapour deposition, J. Nanosci. Nanotechnol. 9(9), 5431–5435 (2009)

    CAS  CrossRef  Google Scholar 

  88. E.R. Alvizo-Paez, J.M. Romo-Herrera, H. Terrones, M. Terrones, J. Ruiz-Garcia, J.L. Hernandez-Lopez: Soft purification of N-doped and undoped multi-wall carbon nanotubes, Nanotechnology 19(15), 155701–01–155701–06 (2008)

    CrossRef  CAS  Google Scholar 

  89. A. Kukovecz, Z. Konya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J.B. Nagy, I. Kiricsi: Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas, Phys. Chem. Chem. Phys. 2(13), 3071–3076 (2000)

    CAS  CrossRef  Google Scholar 

  90. H. Kathyayini, N. Nagaraju, A. Fonseca, J.B. Nagy: Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes, J. Mol. Catal. A 223(1/2), 129–136 (2004)

    CAS  CrossRef  Google Scholar 

  91. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas: Catalytic synthesis and purification of carbon nanotubes, Synth. Met. 77(1–3), 31–34 (1996)

    CAS  CrossRef  Google Scholar 

  92. A. Szabo, D. Mehn, Z. Konya, A. Fonseca, J.B. Nagy: ``Wash and goʼʼ, sodium chloride as an easily removable catalyst support for the synthesis of carbon nanotubes, PhysChemCommun. 6, 40–41 (2003)

    CrossRef  CAS  Google Scholar 

  93. A. Jamrozik, M. Mazurkiewicz, A. Małolepszy, L. Stobiłski, K. Matlak, J. Korecki, K.J. Kurzydńowski, K. Burda: Mössbauer spectroscopy analysis of iron compounds in carboxylated multiwall carbon nanotubes and their ammonium salt, Physica Status Solidi A 208(8), 1783–1786 (2011)

    CAS  CrossRef  Google Scholar 

  94. Q.L. Li, D.X. Yuan, B. Guan, D.M. Lin, X.F. Wang: Removal of metal catalyst in multi-walled carbon nanotubes with combination of Air and Hydrogen annealing followed by acid treatment, J. Nanosci. Nanotechnol. 8(11), 5807–5812 (2008)

    CAS  CrossRef  Google Scholar 

  95. X.K. Li, G.M. Yuan, A. Brown, A. Westwood, R. Brydson, B. Rand: The removal of encapsulated catalyst particles from carbon nanotubes using molten salts, Carbon 44(9), 1699–1705 (2006)

    CAS  CrossRef  Google Scholar 

  96. T.W. Ebbesen: Carbon nanotubes, Annu. Rev. Mater. Sci. 24, 235–264 (1994)

    CAS  CrossRef  Google Scholar 

  97. J.M. Yuan, X.H. Chen, Z.F. Fan, X.G. Yang, Z.H. Chen: An easy method for purifying multi-walled carbon nanotubes by chlorine oxidation, Carbon 46(9), 1266–1269 (2008)

    CAS  CrossRef  Google Scholar 

  98. K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother: Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments, Carbon 49(1), 24–36 (2011)

    CAS  CrossRef  Google Scholar 

  99. C.M. Chen, M. Chen, F.C. Leu, S.Y. Hsu, S.C. Wang, S.C. Shi: Purification of multi-walled carbon nanotubes by microwave digestion method, Diam. Relat. Mater. 13(4–8), 1182–1186 (2004)

    CAS  CrossRef  Google Scholar 

  100. F.H. Ko, C.Y. Lee, C.J. Ko, T.C. Chu: Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel, Carbon 43(4), 727–733 (2005)

    CAS  CrossRef  Google Scholar 

  101. C.M. Chen, M. Chen, Y.W. Peng, H.W. Yu, C.F. Chen: High efficiency microwave digestion purification of multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition, Thin Solid Films 498(1/2), 202–205 (2006)

    CAS  CrossRef  Google Scholar 

  102. G. Cravotto, D. Garella, E.C. Gaudino, F. Turci, S. Bertarione, G. Agostini, F. Cesano, D. Scarano: Rapid purification/oxidation of multi-walled carbon nanotubes under 300 kHz-ultrasound and microwave irradiation, New J. Chem. 35(4), 915–919 (2011)

    CAS  CrossRef  Google Scholar 

  103. Y.H. Wang, J.H. Zhang, J.B. Zang, E.B. Ge, H. Huang: Etching and cutting of multi-walled carbon nanotubes in molten nitrate, Corrosion Sci. 53(11), 3764–3770 (2011)

    CAS  CrossRef  Google Scholar 

  104. S. Delpeux, K. Szostak, E. Frackowiak, F. Beguin: An efficient two-step process for producing. opened multi-walled carbon nanotubes of high-purity, Chem. Phys. Lett. 404(4–6), 374–378 (2005)

    CAS  CrossRef  Google Scholar 

  105. P.X. Hou, S. Bai, Q.H. Yang, C. Liu, H.M. Cheng: Multi-step purification of carbon nanotubes, Carbon 40(1), 81–85 (2002)

    CAS  CrossRef  Google Scholar 

  106. S. Hanelt, J.F. Friedrich, G. Orts-Gil, A. Meyer-Plath: Study of Lewis acid catalyzed chemical bromination and bromoalkylation of multi-walled carbon nanotubes, Carbon 50(3), 1373–1385 (2012)

    CAS  Google Scholar 

  107. N. Tagmatarchis, A. Zattoni, P. Reschiglian, M. Prato: Separation and purification of functionalised water-soluble multi-walled carbon nanotubes by flow field-flow fractionation, Carbon 43(9), 1984–1989 (2005)

    CAS  CrossRef  Google Scholar 

  108. M. Pumera, B. Smid, K. Veltruska: Influence of nitric acid treatment of carbon nanotubes on their physico-chemical properties, J. Nanosci. Nanotechnol. 9(4), 2671–2676 (2009)

    CAS  CrossRef  Google Scholar 

  109. P. Canete-Rosales, V. Ortega, A. Alvarez-Lueje, S. Bollo, M. Gonzalez, A. Anson, M.T. Martínez: Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties, Electrochim. Acta. 62, 163–171 (2012)

    CAS  CrossRef  Google Scholar 

  110. M. Kang, Y. Kim, H. Jeon: In-situ hydrogen and oxygen plasma purification of carbon nanotubes, J. Korean Phys. Soc. 39(6), 1072–1075 (2001)

    CAS  Google Scholar 

  111. X.G. Sun, X.S. Zeng: An investigation on the purification of multiwall carbon nanotubes by oxidation in air, New Carbon Mater. 19(1), 65–68 (2004)

    CAS  Google Scholar 

  112. I.Y.Y. Bu, K. Hou, D. Engstrom: Industrial compatible re-growth of vertically aligned multiwall carbon nanotubes by ultrafast pure oxygen purification process, Diam. Relat. Mater. 20(5–6), 746–751 (2011)

    CAS  CrossRef  Google Scholar 

  113. G.S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth: Separation of carbon nanotubes by size exclusion chromatography, Chem. Commun. 7(3), 435–436 (1998)

    CrossRef  Google Scholar 

  114. G.S. Duesberg, W. Blau, H.J. Byrne, J. Muster, M. Burghard, S. Roth: Chromatography of carbon nanotubes, Synth. Met. 103(1–3), 2484–2485 (1999)

    CAS  CrossRef  Google Scholar 

  115. C.H. Wei, T.Y. Wei, C.H. Liang, F.C. Tai: The separation of different conducting multi-walled carbon nanotubes by AC dielectrophoresis, Diam. Relat. Mater. 18(2–3), 332–336 (2009)

    CAS  CrossRef  Google Scholar 

  116. D.Y. Kim, C.M. Yang, Y.S. Park, K.K. Kim, S.Y. Jeong, J.H. Han, Y.H. Lee: Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition, Chem. Phys. Lett. 413(1–3), 135–141 (2005)

    CAS  CrossRef  Google Scholar 

  117. N. Yao, V. Lordi, S.X.C. Ma, E. Dujardin, A. Krishnan, M.M.J. Treacy, T.W. Ebbesen: Structure and oxidation patterns of carbon nanotubes, J. Mater. Res. 13(9), 2432–2437 (1998)

    CAS  CrossRef  Google Scholar 

  118. B.C. Satishkumar, A. Govindaraj, J. Mofokeng, G.N. Subbanna, C.N.R. Rao: Novel experiments with carbon nanotubes, opening, filling, closing and functionalizing nanotubes, J. Phys. B 29(21), 4925–4934 (1996)

    CAS  Google Scholar 

  119. J. Zhao, Y.Z. Zhang, Y.J. Su, X.L. Huang, L.M. Wei, E.S.W. Kong, Y. Zhang: Structural improvement of CVD multi-walled carbon nanotubes by a rapid annealing process, Diam. Relat. Mater. 25, 242–248 (2012)

    CrossRef  CAS  Google Scholar 

  120. R. Andrews, D. Jacques, D. Qian, E.C. Dickey: Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures, Carbon 39(11), 1681–1687 (2001)

    CAS  CrossRef  Google Scholar 

  121. T. Kanyo, Z. Konya, A. Kukovecz, F. Berger, I. Dekany, I. Kiricsi: Quantitative characterization of hydrophilic-hydrophobic properties of MWNTs surfaces, Langmuir 20(5), 1656–1661 (2004)

    CAS  CrossRef  Google Scholar 

  122. K.Y. Lin, J.K. Chang, C.Y. Chen, W.T. Tsai: Effects of heat treatment on materials characteristics and hydrogen storage capability of multi-wall carbon nanotubes, Diam. Relat. Mater. 18(2–3), 553–556 (2009)

    CAS  CrossRef  Google Scholar 

  123. R.C. Haddon: Pi-electrons in 3 dimensions, Acc. Chem. Res. 21(6), 243–249 (1988)

    CAS  CrossRef  Google Scholar 

  124. Z.F. Chen, W. Thiel, A. Hirsch: Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions, dependence on the carbon-atom pyramidalization, ChemPhysChem. 4(1), 93 (2003)

    CAS  CrossRef  Google Scholar 

  125. S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon: Chemistry of single-walled carbon nanotubes, Acc. Chem. Res. 35(12), 1105–1113 (2002)

    CAS  CrossRef  Google Scholar 

  126. M.A. Hamon, M.E. Itkis, S. Niyogi, T. Alvaraez, C. Kuper, M. Menon, R.C. Haddon: Effect of rehybridization on the electronic structure of single-walled carbon nanotubes, J. Am. Chem. Soc. 123(45), 11292–11293 (2001)

    CAS  CrossRef  Google Scholar 

  127. G.S. Zheng, Z. Wang, S. Irle, K. Morokuma: Origin of the linear relationship between CH2/NH/O-SWNT reaction energies and sidewall curvature: Armchair nanotubes, J. Am Chem. Soc. 128(47), 15117–15126 (2006)

    CAS  CrossRef  Google Scholar 

  128. S. Musso, S. Porro, M. Vinante, L. Vanzetti, R. Ploeger, M. Giorcelli, B. Possetti, F. Trotta, C. Pederzolli, A. Tagliaferro: Modification of MWNTs obtained by thermal-CVD, Diam. Relat. Mater. 16(4–7), 1183–1187 (2007)

    CAS  CrossRef  Google Scholar 

  129. N. Karousis, N. Tagmatarchis, D. Tasis: Current progress on the chemical modification of carbon nanotubes, Chem. Rev. 110(9), 5366–5397 (2010)

    CAS  CrossRef  Google Scholar 

  130. F. Hauke, A. Hirsch: Covalent functionalization of carbon nanotubes. In: Carbon Nanotubes and Related Structures, ed. by D.M. Guldi, N. Martin (Wiley-VCH, Weinheim 2010) pp. 135–198

    CrossRef  Google Scholar 

  131. H. Takahashi, S. Numao, S. Bandow, S. Iijima: AFM imaging of wrapped multiwall carbon nanotube in DNA, Chem. Phys. Lett. 418(4–6), 535–539 (2006)

    CAS  CrossRef  Google Scholar 

  132. V. Sanz, E. Borowiak, P. Lukanov, A.M. Galibert, E. Flahaut, H.M. Coley, S.R.P. Silva, J. McFadden: Optimising DNA binding to carbon nanotubes by non-covalent methods, Carbon 49(5), 1775–1781 (2011)

    CAS  CrossRef  Google Scholar 

  133. J. Du, C. Ge, Y. Liu, R. Bai, D. Li, Y. Yang, L. Liao, C. Chen: The interaction of serum proteins with carbon nanotubes depend on the physicochemical properties of nanotubes, J. Nanosci. Nanotechnol. 11(11), 10102–10110 (2011)

    CAS  CrossRef  Google Scholar 

  134. H.T. Zhao, H.X. Ju: Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase, Anal. Biochem. 350(1), 138–144 (2006)

    CAS  CrossRef  Google Scholar 

  135. K.M. Manesh, H.T. Kim, P. Santhosh, A.I. Gopalan, K.P. Lee: A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane, Biosens. Bioelectron. 23(6), 771–779 (2008)

    CAS  CrossRef  Google Scholar 

  136. A. Garcia, M.A. Herrero, S. Frein, R. Deschenaux, R. Munoz, I. Bustero, F. Toma, M. Prato: Synthesis of dendrimer-carbon nanotube conjugates, Physica Status Solidi A 205(6), 1402–1407 (2008)

    CAS  CrossRef  Google Scholar 

  137. K.S. Liu, H.G. Fu, Y. Xie, L.L. Zhang, K. Pan, W. Zhou: Assembly of beta-cyclodextrins acting as molecular bricks onto multiwall carbon nanotubes, J. Phys. Chem. C 112(4), 951–957 (2008)

    CAS  CrossRef  Google Scholar 

  138. B. Leger, S. Menuel, D. Landy, J.F. Blach, E. Monflier, A. Ponchel: Noncovalent functionalization of multiwall carbon nanotubes by methylated-beta-cyclodextrins modified by a triazole group, Chem. Commun. 46(39), 7382–7384 (2010)

    CAS  CrossRef  Google Scholar 

  139. E.V. Basiuk, V.A. Basiuk, P. Santiago, I. Puente-Lee: Noncovalent functionalization of carbon nanotubes with porphyrins, meso-tetraphenylporphine and its transition metal complexes, J. Nanosci. Nanotechnol. 7(4–5), 1530–1538 (2007)

    CAS  CrossRef  Google Scholar 

  140. D.Y. Zheng, C.G. Hu, Y.F. Peng, W.Q. Yue, S.S. Hu: Noncovalently functionalized water-soluble multiwall-nanotubes through azocarmine B and their application in nitric oxide sensor, Electrochem. Commun. 10(1), 90–94 (2008)

    CAS  CrossRef  Google Scholar 

  141. P. Petrov, F. Stassin, C. Pagnoulle, R. Jerome: Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers, Chem. Commun.(23), 2904–2905 (2003)

    Google Scholar 

  142. V.A. Sinani, M.K. Gheith, A.A. Yaroslavov, A.A. Rakhnyanskaya, K. Sun, A.A. Mamedov, J.P. Wicksted, N.A. Kotov: Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations, J. Am Chem. Soc. 127(10), 3463–3472 (2005)

    CAS  CrossRef  Google Scholar 

  143. A.H. Liu, I. Honma, M. Ichihara, H.S. Zhou: Poly(acrylicacid)-wrapped multi-walled carbon nanotubes composite solubilization in water, definitive spectroscopic properties, Nanotechnology 17(12), 2845–2849 (2006)

    CAS  CrossRef  Google Scholar 

  144. M.N. Zhang, L. Su, L.Q. Mao: Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid, Carbon 44(2), 276–283 (2006)

    CAS  CrossRef  Google Scholar 

  145. P.C. Ma, J.K. Kim, B.Z. Tang: Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites, Compos. Sci. Technol. 67(14), 2965–2972 (2007)

    CAS  CrossRef  Google Scholar 

  146. Z.M. Wang, Q.C. Liu, H. Zhu, H.F. Liu, Y.M. Chen, M.S. Yang: Dispersing multi-walled carbon nanotubes with water-soluble block copolymers and their use as supports for metal nanoparticles, Carbon 45(2), 285–292 (2007)

    CAS  CrossRef  Google Scholar 

  147. C.Y. Hu, H.L. Liao, F.Y. Li, J.H. Xiang, W.K. Li, S.W. Duo, M.S. Li: Noncovalent functionalization of multi-walled carbon nanotubes with siloxane polyether copolymer, Mater. Lett. 62(17–18), 2585–2588 (2008)

    CAS  CrossRef  Google Scholar 

  148. L.X. Xu, Z.B. Ye, Q.Z. Cui, Z.Y. Gu: Noncovalent nonspecific functionalization and solubilization of multi-walled carbon nanotubes at high concentrations with a hyperbranched polyethylene, Macromol. Chem. Phys. 210(24), 2194–2202 (2009)

    CAS  CrossRef  Google Scholar 

  149. S.S. Mahapatra, S.K. Yadav, J.W. Cho: Synthesis and characterization of multi-walled carbon nanotubes functionalized with hyperbranched poly(urea-urethane), J. Nanosci. Nanotechnol. 10(12), 8244–8253 (2010)

    CAS  CrossRef  Google Scholar 

  150. Y.Y. Huang, Y.D. Zheng, W.H. Song, Y.X. Ma, J. Wu, L.Z. Fan: Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels, Compos. Part A 42(10), 1398–1405 (2011)

    CrossRef  CAS  Google Scholar 

  151. S.A. Ntim, O. Sae-Khow, F.A. Witzmann, S. Mitra: Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions, J. Colloid Interface Sci. 355(2), 383–388 (2011)

    CrossRef  CAS  Google Scholar 

  152. A.B. Zhang, M. Tang, J.F. Luan, J.Y. Li: Noncovalent functionalization of multi-walled carbon nanotubes with amphiphilic polymers containing pyrene pendants, Mater. Lett. 67(1), 283–285 (2012)

    CAS  CrossRef  Google Scholar 

  153. C. Ehli, G.M.A. Rahman, N. Jux, D. Balbinot, D.M. Guldi, F. Paolucci, M. Melle-Franco, F. Zerbetto, S. Campidelli, M. Prato: Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids, J. Am Chem. Soc. 128(34), 11222–11231 (2006)

    CAS  CrossRef  Google Scholar 

  154. D.M. Guldi, G.M.A. Rahman, N. Jux, D. Balbinot, U. Hartnagel, N. Tagmatarchis, M. Prato: Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems, J. Am Chem. Soc. 127(27), 9830–9838 (2005)

    CAS  CrossRef  Google Scholar 

  155. D.M. Guldi, G.M.A. Rahman, N. Jux, D. Balbinot, N. Tagmatarchis, M. Prato: Multiwalled carbon nanotubes in donor-acceptor nanohybrids – towards long-lived electron transfer products, Chem. Commun.(15), 2038–2040 (2005)

    Google Scholar 

  156. B.Z. Tang, H.Y. Xu: Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes, Macromolecules 32(8), 2569–2576 (1999)

    CAS  CrossRef  Google Scholar 

  157. D.Q. Yang, J.F. Rochette, E. Sacher: Functionalization of multiwalled carbon nanotubes by mild aqueous sonication, J. Phys. Chem. B 109(16), 7788–7794 (2005)

    CAS  CrossRef  Google Scholar 

  158. N. Chopra, M. Majumder, B.J. Hinds: Bifunctional carbon nanotubes by sidewall protection, Adv. Funct. Mater. 15(5), 858–864 (2005)

    CAS  CrossRef  Google Scholar 

  159. D. Goldman, J.P. Lellouche: An easy method for the production of functional polypyrrole/MWCNT, and polycarbazole/MWCNT. composites using nucleophilic multi-walled carbon nanotubes, Carbon 48(14), 4170–4177 (2010)

    CAS  CrossRef  Google Scholar 

  160. B. Yu, F. Zhou, G. Liu, Y. Liang, W.T.S. Huck, W.M. Liu: The electrolyte switchable solubility of multi-walled carbon nanotube/ionic liquid (MWCNT/IL) hybrids, Chem. Commun.(22), 2356–2358 (2006)

    Google Scholar 

  161. M.J. Park, J.K. Lee, B.S. Lee, Y.W. Lee, I.S. Choi, S.G. Lee: Covalent modification of multiwalled carbon nanotubes with imidazolium-based ionic liquids, effect of anions on solubility, Chem. Mater. 18(6), 1546–1551 (2006)

    CAS  CrossRef  Google Scholar 

  162. W. Zhang, J.K. Sprafke, M.L. Ma, E.Y. Tsui, S.A. Sydlik, G.C. Rutledge, T.M. Swager: Modular functionalization of carbon nanotubes and fullerenes, J. Am. Chem. Soc. 131(24), 8446–8454 (2009)

    CAS  CrossRef  Google Scholar 

  163. Q.F. Cheng, B. Wang, C. Zhang, Z.Y. Liang: Functionalized carbon-nanotube sheet/bismaleimide nanocomposites, mechanical and electrical performance beyond carbon-fiber composites, Small 6(6), 763–767 (2010)

    CAS  CrossRef  Google Scholar 

  164. M.J. Moghaddam, S. Taylor, M. Gao, S.M. Huang, L.M. Dai, M.J. McCall: Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry, Nano Lett. 4(1), 89–93 (2004)

    CAS  CrossRef  Google Scholar 

  165. F.G. Brunetti, M.A. Herrero, J.D.M. Munoz, S. Giordani, A. Diaz-Ortiz, S. Filippone, G. Ruaro, M. Meneghetti, M. Prato, E. Vázquez: Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes, J. Am. Chem. Soc. 129(47), 14580–14581 (2007)

    CAS  CrossRef  Google Scholar 

  166. V. Georoakilas, A.B. Bourlinos, R. Zboril, C. Trapalis: Synthesis, characterization and aspects of superhydrophobic functionalized carbon nanotubes, Chem. Mater. 20(9), 2884–2886 (2008)

    CrossRef  CAS  Google Scholar 

  167. J.X. Li, H. Grennberg: Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes, Chemistry 12(14), 3869–3875 (2006)

    CAS  CrossRef  Google Scholar 

  168. G. Pastorin, W. Wu, S. Wieckowski, J.P. Briand, K. Kostarelos, M. Prato, M. Prato, A. Bianco: Double functionalisation of carbon nanotubes for multimodal drug delivery, Chem. Commun.(11), 1182–1184 (2006)

    Google Scholar 

  169. M. Prato, K. Kostarelos, A. Bianco: Functionalized carbon nanotubes in drug design and discovery, Acc. Chem. Res. 41(1), 60–68 (2008)

    CAS  CrossRef  Google Scholar 

  170. A. Gergely, J. Telegdi, E. Meszaros, Z. Paszti, G. Tarkanyi, F.H. Kármán, E. Kálmán: Modification of multi-walled carbon nanotubes by Diels–Alder and Sandmeyer reactions, J. Nanosci. Nanotechnol. 7(8), 2795–2807 (2007)

    CAS  CrossRef  Google Scholar 

  171. H. Hayden, Y.K. Gunʼko, T.S. Perova: Chemical modification of multi-walled carbon nanotubes using a tetrazine derivative, Chem. Phys. Lett. 435(1–3), 84–89 (2007)

    CAS  CrossRef  Google Scholar 

  172. G. Sakellariou, H. Ji, J.W. Mays, N. Hadjichristidis, D. Baskaran: Controlled covalent functionalization of multiwalled carbon nanotubes using [4+2] cycloaddition of benzocyclobutenes, Chem. Mater. 19(26), 6370–6372 (2007)

    CAS  CrossRef  Google Scholar 

  173. H.J. Lee, S.W. Han, Y.D. Kwon, L.S. Tan, J.B. Baek: Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide, Carbon 46(14), 1850–1859 (2008)

    CAS  CrossRef  Google Scholar 

  174. J.J. Stephenson, A.K. Sadana, A.L. Higginbotham, J.M. Tour: Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: The Billups reaction, Chem. Mater. 18(19), 4658–4661 (2006)

    CAS  CrossRef  Google Scholar 

  175. S.B. Oh, H.L. Kim, J.H. Chang, Y.W. Lee, J.H. Han, S.S. An, S.W. Joo, H.K. Kim, I.S. Choi, H.J. Paik: Facile covalent attachment of well-defined poly(t-butyl acrylate) on carbon nanotubes via radical addition reaction, J. Nanosci. Nanotechnol. 8(9), 4598–4602 (2008)

    CAS  CrossRef  Google Scholar 

  176. S.H. Liao, C.Y. Yen, C.H. Hung, C.C. Weng, M.C. Tsai, Y.F. Lin, C.-C.M. Ma, S.J. Lee: One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells, J. Mater. Chem. 18(33), 3993–4002 (2008)

    CAS  CrossRef  Google Scholar 

  177. W. Li, Y. Bai, Y.K. Zhang, M.L. Sun, R.M. Cheng, X.C. Xu, Y.W. Chen, Y.J. Mo: Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes, Synth. Met. 155(3), 509–515 (2005)

    CAS  CrossRef  Google Scholar 

  178. X.H. Chen, X.L. Wu, J.G. Zou, J.P. Wan: A convenient route to modified multiwall carbon nanotubes with liquid crystal molecules via covalent functionalization, J. Appl. Polym. Sci. 124(4), 3399–3406 (2012)

    CAS  CrossRef  Google Scholar 

  179. X.D. Zhao, W.R. Lin, N.H. Song, X.F. Chen, X.H. Fan, Q.F. Zhou: Water soluble multi-walled carbon nanotubes prepared via nitroxide-mediated radical polymerization, J. Mater. Chem. 16(47), 4619–4625 (2006)

    CAS  CrossRef  Google Scholar 

  180. D. Nepal, S. Samal, K.E. Geckeler: The first fullerene-terminated soluble poly(azomethine) rotaxane, Macromolecules 36, 3800–3802 (2003)

    CAS  CrossRef  Google Scholar 

  181. D. Nepal, J.I. Sohn, W.K. Aicher, S. Lee, K.E. Geckeler: Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction, Biomacromolecules 6(6), 2919–2922 (2005)

    CAS  CrossRef  Google Scholar 

  182. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato: Chemistry of carbon nanotubes, Chem. Rev. 106(3), 1105–1136 (2006)

    CAS  CrossRef  Google Scholar 

  183. K.D. Ausman, H.W. Rohrs, M.F. Yu, R.S. Ruoff: Nanostressing and mechanochemistry, Nanotechnology 10(3), 258–262 (1999)

    CAS  CrossRef  Google Scholar 

  184. Z. Kónya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J.B. Nagy, A.A. Koós, Z. Osváth, A. Kocsonya, L.P. Biró, I. Kiricsi: Large scale production of short functionalized carbon nanotubes, Chem. Phys. Lett. 360(5–6), 429–435 (2002)

    CrossRef  Google Scholar 

  185. K. Niesz, I. Vesselenyi, D. Mehn, Z. Konya, I. Kiricsi: Carbon nanotubes – on the eve of success?. In: Materials Science, Testing and Informatics (Trans Tech, Zurich-Uetikon 2005) pp. 141–146

    Google Scholar 

  186. R. Barthos, D. Mehn, A. Demortier, N. Pierard, Y. Morciaux, G. Demortier, A. Fonseca, J.B. Nagy: Functionalization of single-walled carbon nanotubes by using alkyl-halides, Carbon 43(2), 321–325 (2005)

    CAS  CrossRef  Google Scholar 

  187. H.L. Pan, L.Q. Liu, Z.X. Guo, L.M. Dai, F.S. Zhang, D.B. Zhu: Carbon nanotubols from mechanochemical reaction, Nano Lett. 3(1), 29–32 (2003)

    CAS  CrossRef  Google Scholar 

  188. E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki: Capillarity and wetting of carbon nanotubes, Science 265(5180), 1850–1852 (1994)

    CAS  CrossRef  Google Scholar 

  189. T.W. Ebbesen: Wetting, filling and decorating carbon nanotubes, J. Phys. Chem. Solids 57(6–8), 951–955 (1996)

    CAS  CrossRef  Google Scholar 

  190. P.M. Ajayan, S. Iijima: Capillarity-induced filling of carbon nanotubes, Nature 361(6410), 333–334 (1993)

    CAS  CrossRef  Google Scholar 

  191. A. Chu, J. Cook, R.J.R. Heesom, J.L. Hutchison, M.L.H. Green, J. Sloan: Filling of carbon nanotubes with silver, gold, and gold chloride, Chem. Mater. 8(12), 2751–2754 (1996)

    CAS  CrossRef  Google Scholar 

  192. Y.K. Chen, A. Chu, J. Cook, M.L.H. Green, P.J.F. Harris, R. Heesom, M. Humphries, J. Sloan, S.C. Tsang, J.F.C. Turner: Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies, J. Mater. Chem. 7(3), 545–549 (1997)

    CAS  CrossRef  Google Scholar 

  193. S.C. Tsang, P.J.F. Harris, M.L.H. Green: Thinning and opening of carbon nanotubes by oxidation using carbon-dioxide, Nature 362(6420), 520–522 (1993)

    CAS  CrossRef  Google Scholar 

  194. P.M. Ajayan, O. Stephan, P. Redlich, C. Colliex: Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures, Nature 375(6532), 564–567 (1995)

    CAS  CrossRef  Google Scholar 

  195. B.C. Satishkumar, A. Govindaraj, E.M. Vogl, L. Basumallick, C.N.R. Rao: Oxide nanotubes prepared using carbon nanotubes as templates, J.  Mater. Res. 12(3), 604–606 (1997)

    CAS  CrossRef  Google Scholar 

  196. C.N.R. Rao, B.C. Satishkumar, A. Govindaraj: Zirconia nanotubes, Chem. Commun. 21(16), 1581–1582 (1997)

    CrossRef  Google Scholar 

  197. B.C. Satishkumar, A. Govindaraj, M. Nath, C.N.R. Rao: Synthesis of metal oxide nanorods using carbon nanotubes as templates, J.  Mater. Chem. 10(9), 2115–2219 (2000)

    CAS  CrossRef  Google Scholar 

  198. D. Ugarte, T. Stockli, J.M. Bonard, A. Chatelain, W.A. de Heer: Filling carbon nanotubes, Appl. Phys. A 67(1), 101–105 (1998)

    CAS  CrossRef  Google Scholar 

  199. J. Sloan, J. Cook, A. Chu, M. Zwiefka-Sibley, M.L.H. Green, J.L. Hutchison: Selective deposition of UCl4 and (KCl) x (UCl) y inside carbon nanotubes using eutectic and noneutectic mixtures of UCl4 with KCl, J.  Solid State Chem. 140(1), 83–90 (1998)

    CAS  CrossRef  Google Scholar 

  200. J. Sloan, J. Hammer, M. Zwiefka-Sibley, M.L.H. Green: The opening and filling of single walled carbon nanotubes (SWTs), Chem. Commun. 7(3), 347–348 (1998)

    CrossRef  Google Scholar 

  201. J. Sloan, D.M. Wright, H.G. Woo, S. Bailey, G. Brown, A.P.E. York, K.S. Coleman, J.L. Hutchison, M.L.H. Green: Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun.(8), 699–700 (1999)

    Google Scholar 

  202. J.P. Hu, J.H. Shi, S.P. Li, Y.J. Qin, Z.X. Guo, Y.L. Song, D.B. Zhu: Efficient method to functionalize carbon nanotubes with thiol groups and fabricate gold nanocomposites, Chem. Phys. Lett. 401(4–6), 352–356 (2005)

    CAS  CrossRef  Google Scholar 

  203. G.G. Wildgoose, C.E. Banks, R.G. Compton: Metal nanopartictes and related materials supported on carbon nanotubes, methods and applications, Small 2(2), 182–193 (2006)

    CAS  CrossRef  Google Scholar 

  204. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato: Decorating carbon nanotubes with metal or semiconductor nanoparticles, J.  Mater. Chem. 17(26), 2679–2694 (2007)

    CAS  CrossRef  Google Scholar 

  205. B.F. Pan, D.X. Cui, R. He, F. Gao, Y.F. Zhang: Covalent attachment of quantum dot on carbon nanotubes, Chem. Phys. Lett. 417(4–6), 419–424 (2006)

    CAS  CrossRef  Google Scholar 

  206. W.W. Li, C. Gao, H.F. Qian, J.C. Ren, D.Y. Yan: Multiamino-functionalized carbon nanotubes and their applications in loading quantum dots and magnetic nanoparticles, J. Mater. Chem. 16(19), 1852–1859 (2006)

    CAS  CrossRef  Google Scholar 

  207. C. Gao, W.W. Li, H. Morimoto, Y. Nagaoka, T. Maekawa: Magnetic carbon nanotubes, synthesis by electrostatic self-assembly approach and application in biomanipulations, J. Phys. Chem. B 110(14), 7213–7220 (2006)

    CAS  CrossRef  Google Scholar 

  208. Y. Xiao, T. Gong, S.B. Zhou: The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite, Biomaterials 31(19), 5182–5190 (2010)

    CAS  CrossRef  Google Scholar 

  209. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, S. Bonnamy: Synthesis and characterization of carbon nanotubes – TiO2 nanocomposites, Carbon 42(5–6), 1147–1151 (2004)

    CAS  CrossRef  Google Scholar 

  210. W.D. Wang, P. Serp, P. Kalck, J.L. Faria: Photocatalytic degradation of phenol on MWNT, and titania composite catalysts prepared by a modified sol-gel method, Appl. Catal. B 56(4), 305–312 (2005)

    CAS  CrossRef  Google Scholar 

  211. B. Gao, G.Z. Chen, G.L. Puma: Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity, Appl. B Catal. 89(3–4), 503–509 (2009)

    CAS  CrossRef  Google Scholar 

  212. X.W. Wei, J. Xu, X.H. Song, Y.H. Ni, P. Zhang, C.J. Xia, G.C. Zhao, Z.S. Yang: Multi-walled carbon nanotubes coated with rare earth fluoride EuF3 and TbF3 nanoparticles, Mater. Res. Bull. 41(1), 92–98 (2006)

    CAS  CrossRef  Google Scholar 

  213. Y.J. Chen, C.L. Zhu, T.H. Wang: The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures, Nanotechnology 17(12), 3012–3017 (2006)

    CAS  CrossRef  Google Scholar 

  214. Y.L. Liu, H.F. Yang, Y. Yang, Z.M. Liu, G.L. Shen, R.Q. Yu: Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes, Thin Solid Films 497(1/2), 355–360 (2006)

    CAS  CrossRef  Google Scholar 

  215. Z.H. Wen, Q. Wang, Q. Zhang, J.H. Li: In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes, a novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater. 17(15), 2772–2778 (2007)

    CAS  CrossRef  Google Scholar 

  216. G. Guo, J. Guo, D. Tao, W.C.H. Choy, L. Zhao, W. Qian, Z. Wang: A. Simple method to prepare multi-walled carbon nanotube/ZnO nanoparticle composites, Appl. Phys. A 89(2), 525–528 (2007)

    CAS  CrossRef  Google Scholar 

  217. G.M. Wu, A.R. Wang, M.X. Zhang, H.Y. Yang, B. Zhou, J. Shen: Investigation on properties of V2O5-MWCNTs composites as cathode materials, J. Sol-Gel Sci Technol. 46(1), 79–85 (2008)

    CAS  CrossRef  Google Scholar 

  218. R. Jain, R. Sharma: Novel bismuth/multi-walled carbon nanotubes-based electrochemical sensor for the determination of neuroprotective drug cilostazol, J. Appl. Electrochem. 42(5), 341–348 (2012)

    CAS  CrossRef  Google Scholar 

  219. C. Bittencourt, A. Felten, E.H. Espinosa, R. Ionescu, E. Llobet, X. Corteig, J.J. Pireaux: WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological compositional and gas response studies, Sens. Actuators B 115(1), 33–41 (2006)

    CAS  CrossRef  Google Scholar 

  220. R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, H.W. Kroto, D.R.M. Walton: Tungsten disulphide coated multi-walled carbon nanotubes, Chem. Phys. Lett. 359(1/2), 121–126 (2002)

    CAS  CrossRef  Google Scholar 

  221. S.H. Kim, G.W. Mulholland, M.R. Zachariah: Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization, Carbon 47(5), 1297–1302 (2009)

    CAS  CrossRef  Google Scholar 

  222. J. Wang, M. Musameh, Y.H. Lin: Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc. 125(9), 2408–2409 (2003)

    CAS  CrossRef  Google Scholar 

  223. L.A. Girifalco, M. Hodak, R.S. Lee: Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Phys. Rev. B 62(19), 13104–13110 (2000)

    CAS  CrossRef  Google Scholar 

  224. G.X. Sun, Z.P. Liu, G.M. Chen: Dispersion of pristine multi-walled carbon nanotubes in common organic solvents, Nano 5(2), 103–109 (2010)

    CAS  CrossRef  Google Scholar 

  225. D.H. Marsh, G.A. Rance, M.H. Zaka, R.J. Whitby, A.N. Khlobystov: Comparison of the stability of multiwalled carbon nanotube dispersions in water, Phys. Chem. Chem. Phys. 9(40), 5490–5496 (2007)

    CAS  CrossRef  Google Scholar 

  226. P. Liu, T.M. Wang: Concise route to water-soluble multi-walled carbon nanotubes, Current Nanosci. 6(1), 54–58 (2010)

    CAS  CrossRef  Google Scholar 

  227. J.D. Shen, W.S. Huang, L.P. Wu, Y.Z. Hu, M.X. Ye: Study on amino-functionalized multiwalled carbon nanotubes, Mater. Sci. Eng. A 464(1/2), 151–156 (2007)

    Google Scholar 

  228. S.P. Li, Y.J. Qin, J.H. Shi, Z.X. Guo, L. Yongfang, D.B. Zhu: Electrical properties of soluble carbon nanotube/polymer composite films, Chem. Mater. 17(1), 130–135 (2005)

    CAS  CrossRef  Google Scholar 

  229. J.R. Yu, N. Grossiord, C.E. Koning, J. Loos: Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon 45(3), 618–623 (2007)

    CAS  CrossRef  Google Scholar 

  230. W.H. Duan, Q. Wang, F. Collins: Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective, Chem. Sci. 2(7), 1407–1413 (2011)

    CAS  CrossRef  Google Scholar 

  231. M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett. 3(2), 269–273 (2003)

    CAS  CrossRef  Google Scholar 

  232. H. Wang, W. Zhou, D.L. Ho, K.I. Winey, J.E. Fischer, C.J. Glinka, E.K. Hobbie: Dispersing single-walled carbon nanotubes with surfactants: A small angle neutron scattering study, Nano Lett. 4(9), 1789–1793 (2004)

    CAS  CrossRef  Google Scholar 

  233. A.G. Ryabenko, T.V. Dorofeeva, G.I. Zvereva: UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy, Carbon 42(8–9), 1523–1535 (2004)

    CAS  CrossRef  Google Scholar 

  234. S. Meuer, L. Braun, R. Zentel: Pyrene containing polymers for the non-covalent functionalization of carbon nanotubes, Macromol. Chem. Phys. 210(18), 1528–1535 (2009)

    CAS  CrossRef  Google Scholar 

  235. M. Loginov, N. Lebovka, E. Vorobiev: Laponite assisted dispersion of carbon nanotubes in water, J. Colloid Interface Sci. 365(1), 127–136 (2012)

    CAS  CrossRef  Google Scholar 

  236. N.T. Hu, G.D. Dang, H.W. Zhou, J. Jing, C.H. Chen: Efficient direct water dispersion of multi-walled carbon nanotubes by functionalization with lysine, Mater. Lett. 61(30), 5285–5287 (2007)

    CAS  CrossRef  Google Scholar 

  237. I. Madni, C.Y. Hwang, S.D. Park, Y.H. Choa, H.T. Kim: Mixed surfactant system for stable suspension of multiwalled carbon nanotubes, Colloids Surf. A 358(1–3), 101–107 (2010)

    CAS  CrossRef  Google Scholar 

  238. C.H. Xue, R.J. Zhou, M.M. Shi, Y. Gao, G. Wu, X.B. Zhang, H.Z. Chen, M. Wang: The preparation of highly water-soluble multi-walled carbon nanotubes by irreversible noncovalent functionalization with a pyrene-carrying polymer, Nanotechnology 19(21), 215604 (2008)

    CrossRef  CAS  Google Scholar 

  239. C.H. Xue, M.M. Shi, Q.X. Yan, Z. Shao, Y. Gao, G. Wu, X.B. Zhang, Y. Yang, H.Z. Chen, M. Wang: Preparation of water-soluble multi-walled carbon nanotubes by polymer dispersant assisted exfoliation, Nanotechnology 19(11), 115605 (2008)

    CrossRef  CAS  Google Scholar 

  240. P.R. Silva, V.O. Almeida, G.B. Machado, E.V. Benvenutti, T.M.H. Costa, M.R. Gallas: Surfactant-based dispersant for multiwall carbon nanotubes to prepare ceramic composites by a sol-gel method, Langmuir 28(2), 1447–1452 (2012)

    CAS  CrossRef  Google Scholar 

  241. Q.H. Yang, P.X. Hou, S. Bai, M.Z. Wang, H.M. Cheng: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345(1/2), 18–24 (2001)

    CAS  CrossRef  Google Scholar 

  242. S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko: Capillary condensation of N2 on multiwall carbon nanotubes, J. Phys. Chem. B 102(24), 4689–4692 (1998)

    CAS  CrossRef  Google Scholar 

  243. D. Ugarte, A. Chatelain, W.A. deHeer: Nanocapillarity and chemistry in carbon nanotubes, Science 274(5294), 1897–1899 (1996)

    CAS  CrossRef  Google Scholar 

  244. W.Q. Han, S.S. Fan, Q.Q. Li, B.L. Gu, X.B. Zhang, W.A. Yu: Synthesis of silicon nitride nanorods using carbon nanotube as a template, Appl. Phys. Lett. 71(16), 2271–2273 (1997)

    CAS  CrossRef  Google Scholar 

  245. W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science 277(5330), 1287–1289 (1997)

    CAS  CrossRef  Google Scholar 

  246. Y.Q. Zhu, W.K. Hsu, H.W. Kroto, D.R.M. Walton: Carbon nanotube template promoted growth of NbS2 nanotubes/nanorods, Chem. Commun.(21), 2184–2185 (2001)

    Google Scholar 

  247. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset: Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39(4), 507–514 (2001)

    CAS  CrossRef  Google Scholar 

  248. E. Alain, Y.F. Yin, T.J. Mays, B. McEnaney: Molecular simulation and measurement of adsorption in porous carbon nanotubes, Stud. Surf. Sci. 128, 313–322 (2000)

    CAS  Google Scholar 

  249. W.K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y.Q. Zhu, N. Grobert, A. Schilder, R.J.H. Clark, H.W. Kroto, D.R.M. Walton: Boron-doping effects in carbon nanotubes, J. Mater. Chem. 10(6), 1425–1429 (2000)

    CAS  CrossRef  Google Scholar 

  250. W.K. Hsu, W.Z. Li, Y.Q. Zhu, N. Grobert, M. Terrones, H. Terrones, H. Terrones, N. Yao, J.P. Zhang, S. Firth, R.J.H. Clark, A.K. Cheetham, J.P. Hare, H.W. Kroto, D.R.M. Walton: KCl crystallization within the space between carbon nanotube walls, Chem. Phys. Lett. 317(1/2), 77–82 (2000)

    CAS  CrossRef  Google Scholar 

  251. K. Rana, A. Sil, S. Ray: Modification of the structure of multi-walled carbon nanotubes by choice of catalyst and their electro-chemical behavior, Mater. Chem. Phys. 120(2–3), 484–489 (2010)

    CAS  CrossRef  Google Scholar 

  252. G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon: Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chem. Phys. Lett. 312(1), 14–18 (1999)

    CAS  CrossRef  Google Scholar 

  253. X.B. Wu, P. Chen, J. Lin, K.L. Tan: Hydrogen uptake by carbon nanotubes, Internat. J. Hydrogen Energy 25(3), 261–265 (2000)

    CAS  CrossRef  Google Scholar 

  254. H. Furuta, T. Kawaharamura, M. Furuta, K. Kawabata, T. Hirao, T. Komukai, K. Yoshihara, Y. Shimomoto, T. Oguchi: Crystal structure analysis of multiwalled carbon nanotube forests by newly developed cross-sectional X-ray diffraction measurement, Appl. Phys. Express 3, 105101 (2010)

    CrossRef  CAS  Google Scholar 

  255. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Youngʼs modulus observed for individual carbon nanotubes, Nature 381(6584), 678–680 (1996)

    CAS  CrossRef  Google Scholar 

  256. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287(5453), 637–640 (2000)

    CAS  CrossRef  Google Scholar 

  257. I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen, E. Riedo: Radial elasticity of multiwalled carbon nanotubes, Phys. Rev. Lett. 94(17), 170401 (2005)

    CrossRef  CAS  Google Scholar 

  258. M.F. Yu, T. Kowalewski, R.S. Ruoff: Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force, Phys. Rev. Lett. 85(7), 1456–1459 (2000)

    CAS  CrossRef  Google Scholar 

  259. M. Huhtala, A.V. Krasheninnikov, J. Aittoniemi, S.J. Stuart, K. Nordlund, K. Kaski: Improved mechanical load transfer between shells of multiwalled carbon nanotubes, Phys. Rev. B 70(4), 045404–01–045404–08 (2004)

    CrossRef  CAS  Google Scholar 

  260. A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl: Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes, Phys. Rev. Lett. 97(2), 025501 (2006)

    CAS  CrossRef  Google Scholar 

  261. M. Locascio, B. Peng, P. Zapol, Y. Zhu, S. Li, T. Belytschko, H.D. Espinosa: Tailoring the load carrying capacity of MWCNTs through inter-shell atomic bridging, Exp. Mech. 49(2), 169–182 (2009)

    CAS  CrossRef  Google Scholar 

  262. A. Volodin, M. Ahlskog, E. Seynaeve, C. Van Haesendonck, A. Fonseca, J.B. Nagy: Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy, Phys. Rev. Lett. 84(15), 3342–3345 (2000)

    CAS  CrossRef  Google Scholar 

  263. S. Kwon, H. Park, H.C. Shim, H.W. Lee, Y.K. Kwak, S. Kim: Experimental determination of the spring constant of an individual multiwalled carbon nanotube cantilever using fluorescence measurement, Appl. Phys. Lett. 95(1), 013110–01–013110–03 (2009)

    CrossRef  CAS  Google Scholar 

  264. X.Q. Chen, S.L. Zhang, D.A. Dikin, W.Q. Ding, R.S. Ruoff, L.J. Pan, Y. Nakayama: Mechanics of a carbon nanocoil, Nano Lett. 3(9), 1299–1304 (2003)

    CAS  CrossRef  Google Scholar 

  265. A. Volodin, D. Buntinx, M. Ahlskog, A. Fonseca, J.B. Nagy, C. Van Haesendonck: Coiled carbon nanotubes as self-sensing mechanical resonators, Nano Lett. 4(9), 1775–1779 (2004)

    CAS  CrossRef  Google Scholar 

  266. A. Kukovecz, T. Kanyo, Z. Kónya, I. Kiricsi: Long-time low-impact ball milling of multi-wall carbon nanotubes, Carbon 43(5), 994–1000 (2005)

    CAS  CrossRef  Google Scholar 

  267. H. Machida, S. Honda, S. Ohkura, K. Oura, H. Inakura, M. Katayama: Improvement in field emission uniformity from screen-printed double-walled carbon nanotube paste by grinding, Jpn. J. Appl. Phys. 1 45(2A), 1044–1046 (2006)

    CAS  CrossRef  Google Scholar 

  268. J. Hahn, J.E. Yoo, J. Han, H.B. Kwon, J.S. Suh: Field emission from the film of the finely black core material dispersed arc discharge, Carbon 43(5), 937–943 (2005)

    CAS  CrossRef  Google Scholar 

  269. J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood: Dispersion of carbon nanotubes in liquids, J. Dispers. Sci. Technol. 24(1), 1–41 (2003)

    CAS  CrossRef  Google Scholar 

  270. I. Willems, Z. Konya, A. Fonseca, J.B. Nagy: Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide supported Co-based catalysts, Appl. Catal. A 10, 229(1/2), 229–233 (2002)

    CAS  CrossRef  Google Scholar 

  271. Z. Konya, J. Zhu, K. Niesz, D. Mehn, I. Kiricsi: End morphology of ball milled carbon nanotubes, Carbon 42(10), 2001–2008 (2004)

    CAS  CrossRef  Google Scholar 

  272. S. Iijima, C. Brabec, A. Maiti, J. Bernholc: Structural flexibility of carbon nanotubes, J. Chem. Phys. 104(5), 2089–2092 (1996)

    CAS  CrossRef  Google Scholar 

  273. M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Bending and buckling of carbon nanotubes under large strain, Nature 389(6651), 582–584 (1997)

    CAS  CrossRef  Google Scholar 

  274. P.L. McEuen, J.Y. Park: Electron transport in single-walled carbon nanotubes, MRS Bulletin 29(4), 272–275 (2004)

    CAS  CrossRef  Google Scholar 

  275. Y. Awano, S. Sato, D. Kondo, M. Ohfuti, A. Kawabata, M. Nihei, N. Yokoyama: Carbon nanotube via interconnect technologies: Size-classified catalyst nanoparticles and low-resistance ohmic contact formation, Phys. Status Solidi (a) 203(14), 3611–3616 (2006)

    CAS  CrossRef  Google Scholar 

  276. H. Kajiura, A. Nandyala, A. Bezryadin: Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes, Carbon 43(6), 1317–1319 (2005)

    CAS  CrossRef  Google Scholar 

  277. G.D. Nessim, M. Seita, K.P. OʼBrien, A.J. Hart, R.K. Bonaparte, R.R. Mitchell, C.V. Thompson: Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Lett. 9(10), 3398–3405 (2009)

    CAS  CrossRef  Google Scholar 

  278. B. Kozinsky, N. Marzari: Static dielectric properties of carbon nanotubes from first principles, Phys. Rev. Lett. 96(16), 166801–01–166801–04 (2006)

    CrossRef  CAS  Google Scholar 

  279. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors, Science 280(5370), 1744–1746 (1998)

    CAS  CrossRef  Google Scholar 

  280. A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonard, L. Forro, T. Nussbaumer, C. Schönenberger: Aharonov–Bohm oscillations in carbon nanotubes, Nature 397(6721), 673–675 (1999)

    CAS  CrossRef  Google Scholar 

  281. C. Schonenberger, A. Bachtold, C. Strunk, J.P. Salvetat, L. Forro: Interference and Interaction in multi-wall carbon nanotubes, Appl. Phys. A 69(3), 283–295 (1999)

    CAS  CrossRef  Google Scholar 

  282. P.C. Collins, M.S. Arnold, P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292(5517), 706–709 (2001)

    CAS  CrossRef  Google Scholar 

  283. P.G. Collins, P. Avouris: Multishell conduction in multiwalled carbon nanotubes, Appl. Phys. A 74(3), 329–332 (2002)

    CAS  CrossRef  Google Scholar 

  284. A. Naeemi, J.D. Meindl: Compact physical models for multiwall carbon-nanotube interconnects, IEEE Electron. Device Lett. 27(5), 338–340 (2006)

    CrossRef  Google Scholar 

  285. H.J. Li, W.G. Lu, J.J. Li, X.D. Bai, C.Z. Gu: Multichannel ballistic transport in multiwall carbon nanotubes, Phys. Rev. Lett. 95(8), 086601–01–086601–04 (2005)

    CAS  CrossRef  Google Scholar 

  286. D. Mattia, M.P. Rossi, B.M. Kim, G. Korneva, H.H. Bau, Y. Gogotsi: Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films, J.  Phys. Chem. B 110(20), 9850–9855 (2006)

    CAS  CrossRef  Google Scholar 

  287. D.J. Yang, S.G. Wang, Q. Zhang, P.J. Sellin, G. Chen: Thermal and electrical transport in multi-walled carbon nanotubes, Phys. Lett. A 329(3), 207–213 (2004)

    CAS  CrossRef  Google Scholar 

  288. K. Kaneto, M. Tsuruta, G. Sakai, W.Y. Cho, Y. Ando: Electrical conductivities of multi-wall carbon nano tubes, Synth. Met. 103(1–3), 2543–2546 (1999)

    CAS  CrossRef  Google Scholar 

  289. W.I. Milne, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, S.B. Lee, D.G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J.P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, V. Thien Binh: Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition, Diam. Relat. Mater. 12(3–7), 422–428 (2003)

    CAS  CrossRef  Google Scholar 

  290. G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. Garcia, A. Zettl: Probing nanoscale solids at thermal extremes, Phys. Rev. Lett. 99(15), 155901–01–155901–04 (2007)

    CAS  CrossRef  Google Scholar 

  291. J.W. Jang, K.W. Lee, C.E. Lee, T.J. Lee, C.J. Lee, S.C. Lyu: Magnetic properties of Fe catalysts included in carbon nanotubes, Phys. Status Solidi (b) 241(7), 1605–1608 (2004)

    CAS  CrossRef  Google Scholar 

  292. V.P. Arya, V. Prasad, P.S.A. Kumar: Magnetic properties of iron particles embedded in multiwall carbon nanotubes, J. Nanosci. Nanotechnol. 9(9), 5406–5410 (2009)

    CAS  CrossRef  Google Scholar 

  293. J. Wang, P. Beeli, Y. Ren, G.M. Zhao: Giant magnetic moment enhancement of nickel nanoparticles embedded in multiwalled carbon nanotubes, Phys. Rev. B 82(19), 193410–01–193410–04 (2010)

    CrossRef  CAS  Google Scholar 

  294. X. Hoffer, C. Klinke, J.M. Bonard, L. Gravier, J.E. Wegrowe: Spin-dependent magnetoresistance in multiwall carbon nanotubes, Europhys. Lett. 67(1), 103–109 (2004)

    CAS  CrossRef  Google Scholar 

  295. R.M. Langford, M.J. Thornton, T.X. Wang, W. Blau, B. Lassagne, B. Raquet: Magnetoresistance and spin diffusion in multi-wall carbon nanotubes, Microelectron. Eng. 84(5–8), 1593–1595 (2007)

    CAS  CrossRef  Google Scholar 

  296. E.D. Minot, Y. Yaish, V. Sazonova, P.L. McEuen: Determination of electron orbital magnetic moments in carbon nanotubes, Nature 428(6982), 536–539 (2004)

    CAS  CrossRef  Google Scholar 

  297. M. Yamamoto, M. Koshino, T. Ando: Electric and magnetic response of multi-wall carbon nanotubes, J. Phys. Soc. Jpn. 77(8), 084705–01–084705–04 (2008)

    CrossRef  CAS  Google Scholar 

  298. I.S. Yu, J. Lee, S. Lee: NMR of hydrogen adsorbed on carbon nanotubes, Physica B 329, 421–422 (2003)

    CrossRef  CAS  Google Scholar 

  299. C.F.M. Clewett, T. Pietrass: 129Xe and 131Xe NMR of gas adsorption on single- and multi-walled carbon nanotubes, J. Phys. Chem. B 109(38), 17907–17912 (2005)

    CAS  CrossRef  Google Scholar 

  300. K.V. Romanenko, A. Fonseca, S. Dumonteil, J.B. Nagy, J.D.B. de Lacaillerie, O.B. Lapina, J. Fraissard: 129Xe NMR study of Xe adsorption on multiwall carbon nanotubes, Solid State Nucl. Magn. Res. 28(2–4), 135–141 (2005)

    CAS  CrossRef  Google Scholar 

  301. M.G. Ruther, F. Frehill, J.E. OʼBrien, A.I. Minett, W.J. Blau, J.G. Vos, M. Panhuis: Characterization of covalent functionalized carbon nanotubes, J. Phys. Chem. B 108(28), 9665–9668 (2004)

    CrossRef  CAS  Google Scholar 

  302. M. Xu, Q.H. Huang, Q. Chen, P.S. Guo, Z. Sun: Synthesis and characterization of octadecylamine grafted multi-walled carbon nanotubes, Chem. Phys. Lett. 375(5–6), 598–604 (2003)

    CAS  CrossRef  Google Scholar 

  303. J.C. Yu, B. Tonpheng, G. Grobner, O. Andersson: A MWCNT/polyisoprene composite reinforced by an effective load transfer reflected in the extent of polymer coating, Macromolecules 45(6), 2841–2849 (2012)

    CAS  CrossRef  Google Scholar 

  304. S. Rana, H.J. Yoo, J.W. Cho, B.C. Chun, J.S. Park: Functionalization of multi-walled carbon nanotubes with poly(epsilon-caprolactone) using click chemistry, J. Appl. Polymer Sci. 119(1), 31–37 (2011)

    CAS  CrossRef  Google Scholar 

  305. D. Priftis, G. Sakellariou, D. Baskaran, J.W. Mays, N. Hadjichristidis: Polymer grafted Janus multi-walled carbon nanotubes, Soft Matter. 5(21), 4272–4278 (2009)

    CAS  CrossRef  Google Scholar 

  306. A. De Martino, R. Egger, K. Hallberg, C.A. Balseiro: Spin–orbit coupling and electron spin resonance theory for carbon nanotubes, Phys. Rev. Lett. 88(20), 206402–01–206402–04 (2002)

    CrossRef  CAS  Google Scholar 

  307. I.I. Geru, Y.I. Prylutskyy, V. Koroli: Inhomogeneous EPR-line broadening of carbon nanotubes, Metallofiz. Nov. Tekhnol. 32(7), 871–876 (2010)

    CAS  Google Scholar 

  308. V. Likodimos, S. Glenis, N. Guskos, C.L. Lin: Magnetic and electronic properties of multiwall carbon nanotubes, Phys. Rev. B 68(4), 045417–01–045417–06 (2003)

    CrossRef  CAS  Google Scholar 

  309. P. Szroeder, F. Rozpłoch, W. Marciniak: Two-temperature EPR measurements of multi-walled carbon nanotubes, Interfacial Effects and Novel Properties of Nanomaterials, Vol. 94, ed. by W. Lojkowski, J.R. Blizzard (Trans Tech Publications, Zürich 2003) pp. 275–278

    Google Scholar 

  310. L.W. Chang, J.T. Lue: Magnetic properties of multi-walled carbon nanotubes, J. Nanosci. Nanotechnol. 9(3), 1956–1963 (2009)

    CAS  CrossRef  Google Scholar 

  311. A.S. Kotosonov, D.V. Shilo, A.P. Moravskii: Magnetic properties of carbon nanotubes produced by the arc-discharge method under different conditions, Phys. Solid State 44(4), 666–667 (2002)

    CAS  CrossRef  Google Scholar 

  312. T. Pietrass, J.L. Dewald, C.F. Clewett, D. Tierney, A.V. Ellis, S. Dias, A. Alvarado, L. Sandoval, S. Tai, S.A. Curran: Electron spin resonance and Raman scattering spectroscopy of multi-walled carbon nanotubes: A function of acid treatment, J. Nanosci. Nanotechnol. 6(1), 135–140 (2006)

    CAS  Google Scholar 

  313. F. Beuneu, C. lʼHuillier, J.P. Salvetat, J.M. Bonard, L. Forro: Modification of multiwall carbon nanotubes by electron irradiation, an ESR study, Phys. Rev. B 59(8), 5945–5949 (1999)

    CAS  CrossRef  Google Scholar 

  314. S. Ishii, N. Aoki, K. Miyamoto, N. Oguri, K. Horiuchi, Y. Ochiai: Cesr in multi walled carbon nanotubes, Physica E 17(1–4), 386–388 (2003)

    CAS  CrossRef  Google Scholar 

  315. S.D. Mhlanga, E.N. Nxumalo, N. Coville, V.V. Srinivasu: Nitrogen doping of CVD multiwalled carbon nanotubes, observation of a large g-factor shift, Mater. Chem. Phys. 130(3), 1182–1186 (2011)

    CAS  CrossRef  Google Scholar 

  316. M.S. Dresselhaus, P.C. Eklund: Phonons in carbon nanotubes, Adv. Phys. 49(6), 705–814 (2000)

    CAS  CrossRef  Google Scholar 

  317. W. Yi, L. Lu, D.L. Zhang, Z.W. Pan, S.S. Xie: Linear specific heat of carbon nanotubes, Phys. Rev. B 59(14), R9015–R8 (1999)

    CAS  CrossRef  Google Scholar 

  318. J.C. Lasjaunias: Thermal properties of carbon nanotubes, C. r. Phys. 4(9), 1047–1054 (2003)

    CAS  CrossRef  Google Scholar 

  319. M. Gaillard, H. Mbitsi, A. Petit, E. Amin-Chalhoub, C. Boulmer-Leborgne, N. Semmar, E. Millon, J. Mathias, S. Kouassi: Electrical and thermal characterization of carbon nanotube films, J. Vac. Sci. Technol. B 29(4), 1805 (2011)

    CrossRef  CAS  Google Scholar 

  320. T.Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser: Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method, Appl. Phys. Lett. 87(1), 013108–01–013108–03 (2005)

    CrossRef  CAS  Google Scholar 

  321. P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 8721(21), 215502–01–215502–04 (2001)

    CrossRef  CAS  Google Scholar 

  322. R. Prasher: Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes, Phys. Rev. B 77(7), 075424–01–075424–11 (2008)

    CrossRef  CAS  Google Scholar 

  323. M. Fujii, X. Zhang, H.Q. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu: Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett. 95(6), 065502 (2005)

    CrossRef  CAS  Google Scholar 

  324. H.Y. Chiu, V.V. Deshpande, H.W.C. Postma, C.N. Lau, C. Miko, L. Forro, M. Bockrath: Ballistic phonon thermal transport in multiwalled carbon nanotubes, Phys. Rev. Lett. 95(22), 226101 (2005)

    CrossRef  CAS  Google Scholar 

  325. X.H. Yan, Y. Xiao, Z.M. Li: Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes, J. Appl. Phys. 99(12), 124305–01–124305–04 (2006)

    CrossRef  CAS  Google Scholar 

  326. C. Masarapu, L.L. Henry, B.Q. Wei: Specific heat of aligned multiwalled carbon nanotubes, Nanotechnology 16(9), 1490–1494 (2005)

    CAS  CrossRef  Google Scholar 

  327. M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham: Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. Thermophys. 25(4), 971–985 (2004)

    CAS  CrossRef  Google Scholar 

  328. B.H. Kim, G.P. Peterson: Effect of morphology of carbon nanotubes on thermal conductivity enhancement of nanofluids, J. Thermophys. Heat Transf. 21(3), 451–459 (2007)

    CAS  CrossRef  Google Scholar 

  329. Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park: Investigation on characteristics of thermal conductivity enhancement of nanofluids, Curr. Appl. Phys. 6(6), 1068–1071 (2006)

    CrossRef  Google Scholar 

  330. W.S. Bacsa, D. Ugarte, A. Chatelain, W.A. Deheer: High-resolution electron-microscopy and inelastic light-scattering of purified multishelled carbon nanotubes, Phys. Rev. B 50(20), 15473–15476 (1994)

    CAS  CrossRef  Google Scholar 

  331. F. Bommeli, L. Degiorgi, P. Wachter, W.S. Bacsa, W.A. deHeer, L. Forro: The optical response of carbon nanotubes, Synth. Met. 86(1–3), 2307–2308 (1997)

    CAS  CrossRef  Google Scholar 

  332. H. Hiura, T.W. Ebbesen, K. Tanigaki, H. Takahashi: Raman studies of carbon nanotubes, Chem. Phys. Lett. 202(6), 509–512 (1993)

    CAS  CrossRef  Google Scholar 

  333. J.M. Holden, Z. Ping, X.X. Bi, P.C. Eklund, S.J. Bandow, R.A. Jishi, K. Daschowdhury, G. Dresselhaus, M.S. Dresselhaus: Raman-scattering from nanoscale carbons generated in a cobalt-catalyzed carbon plasma, Chem. Phys. Lett. 220(3–5), 186–191 (1994)

    CAS  CrossRef  Google Scholar 

  334. P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan: Temperature-dependent vibrational-spectra of carbon nanotubes, Phys. Rev. B 51(15), 10048–10051 (1995)

    CAS  CrossRef  Google Scholar 

  335. H. Jantoljak, J.P. Salvetat, L. Forro, C. Thomsen: Low-energy Raman-active phonons of multiwalled carbon nanotubes, Appl. Phys. A 67(1), 113–116 (1998)

    CAS  CrossRef  Google Scholar 

  336. R.A. Jishi, L. Venkataraman, M.S. Dresselhaus, G. Dresselhaus: Phonon modes in carbon nanotubules, Chem. Phys. Lett. 209(1/2), 77–82 (1993)

    CAS  CrossRef  Google Scholar 

  337. J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, H. Zandbergen, M. Delamesiere, S. Draper, H. Zandbergen: Resonance Raman and infrared-spectroscopy of carbon nanotubues, Chem. Phys. Lett. 221(1/2), 53–58 (1994)

    CAS  CrossRef  Google Scholar 

  338. K. Tanaka, T. Sato, T. Yamabe, K. Okahara, K. Uchida, M. Yumura, M. Niino, H. Ohshima, S. Kurik: Electronic-properties of carbon nanotube, Chem. Phys. Lett. 223(1/2), 65–68 (1994)

    CAS  CrossRef  Google Scholar 

  339. R. Saito, A. Jorio, A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta: Probing phonon dispersion relations of graphite by double resonance Raman scattering, Phys. Rev. Lett. 88(2), 027401–01–027401–04 (2002)

    CAS  CrossRef  Google Scholar 

  340. J. Kurti, V. Zolyomi, A. Gruneis, H. Kuzmany: Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes, Phys. Rev. B 65(16), 165433 (2002)

    CrossRef  CAS  Google Scholar 

  341. S.M. Bose, S. Gayen, S.N. Behera: Theory of the tangential G-band feature in the Raman spectra of metallic carbon nanotubes, Phys. Rev. B 72(15), 153402–01–153402–04 (2005)

    CrossRef  CAS  Google Scholar 

  342. S. Osswald, E. Flahaut, H. Ye, Y. Gogotsi: Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem. Phys. Lett. 402(4–6), 422–427 (2005)

    CAS  CrossRef  Google Scholar 

  343. R.A. DiLeo, B.J. Landi, R.P. Raffaelle: Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, J. Appl. Phys. 101(6), 064307–01–064307–05 (2007)

    CrossRef  CAS  Google Scholar 

  344. H. Kuzmany, W. Plank, R. Pfeiffer, F. Simon: Raman scattering from double-walled carbon nanotubes, J.  Raman Spectroscopy 39(2), 134–140 (2008)

    CAS  CrossRef  Google Scholar 

  345. R. Pfeiffer, F. Simon, H. Kuzmany, V.N. Popov: Fine structure of the radial breathing mode of double-wall carbon nanotubes, Phys. Rev. B 72(16), 161404(R)–01–161404(R)–04 (2005)

    CrossRef  CAS  Google Scholar 

  346. Y. Ando, X. Zhao, H. Shimoyama: Structure analysis of purified multiwalled carbon nanotubes, Carbon 39(4), 569–574 (2001)

    CAS  CrossRef  Google Scholar 

  347. M. Endo, Y.A. Kim, T. Hayashi, H. Muramatsu, M. Terrones, R. Saito, F. Villalpando-Paez, S.G. Chou, M.S. Dresselhaus: Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems, Small 2(8/9), 1031–1106 (2006)

    CAS  CrossRef  Google Scholar 

  348. C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. Van Lier, J.-C. Charlier, M.S. Dresselhaus, R. Saito, Y.A. Kim, T. Hayashi, H. Muramatsu, M. Endo, M.A. Pimenta: Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes, Phys. Rev. B 73(19), 1934081–1934084 (2006)

    CrossRef  CAS  Google Scholar 

  349. M. Jinno, Y. Ando, S. Bandow, J. Fan, M. Yudasaka, S. Iijima: Raman scattering study for heat-treated carbon nanotubes, the origin of approximate to 1855 cm−1 Raman band, Chem. Phys. Lett. 418(1–3), 109–114 (2006)

    CAS  CrossRef  Google Scholar 

  350. N. Chakrapani, S. Curran, B.Q. Wei, P.M. Ajayan, A. Carrillo, R.S. Kane: Spectral fingerprinting of structural defects in plasma-treated carbon nanotubes, J. Mater. Res. 18(10), 2515–2521 (2003)

    CAS  CrossRef  Google Scholar 

  351. R. Saito, G. Dresselhaus, M.S. Dresselhaus: Electronic-structure of double-layer graphene tubules, J. Appl. Phys. 73(2), 494–500 (1993)

    CAS  CrossRef  Google Scholar 

  352. F.J. GarciaVidal, J.M. Pitarke, J.B. Pendry: Effective medium theory of the optical properties of aligned carbon nanotubes, Phys. Rev. Lett. 78(22), 4289–4292 (1997)

    CAS  CrossRef  Google Scholar 

  353. K. Kamarás, Á. Pekker, M. Bruckner, F. Borondics, A.G. Rinzler, D.B. Tanner, M.E. Itkis, R.C. Haddon, Y. Tan, D.E. Resasco: Wide-range optical spectra of carbon nanotubes: A comparative study, Phys. Status Solidi (b) 245(10), 2229–2232 (2008)

    CrossRef  CAS  Google Scholar 

  354. X. Sun, R.Q. Yu, G.Q. Xu, T.S.A. Hor, W. Ji: Broadband optical limiting with multiwalled carbon nanotubes, Appl. Phys. Lett. 73(25), 3632–3634 (1998)

    CAS  CrossRef  Google Scholar 

  355. Z.P. Yang, L.J. Ci, J.A. Bur, S.Y. Lin, P.M. Ajayan: Experimental observation of an extremely dark material made by a low-density nanotube array, Nano Lett. 8(2), 446–451 (2008)

    CAS  CrossRef  Google Scholar 

  356. M.E. Brennan, J.N. Coleman, A. Drury, B. Lahr, T. Kobayashi, W.J. Blau: Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes, Opt. Lett. 28(4), 266–268 (2003)

    CAS  CrossRef  Google Scholar 

  357. M.E. Brennan, J.N. Coleman, M.I.H. Panhuis, L. Marty, H.J. Byrne, W.J. Blau: Nonlinear photoluminescence in multiwall carbon nanotubes, Synth. Met. 119(1–3), 641–642 (2001)

    CAS  CrossRef  Google Scholar 

  358. M. Reyes-Reyes, E. Segura-Cardenas, A.Y. Gorbatchev, R. Lopez-Sandoval: Infrared photoluminescence of composite films containing quasi-isolated multiwalled carbon nanotubes and carbon nanoshells, J. Nanosci. Nanotechnol. 10(7), 4352–4356 (2010)

    CAS  CrossRef  Google Scholar 

  359. L. Minati, G. Speranza, I. Bernagozzi, S. Torrengo, A. Chiasera, M. Ferrari: Luminescent short thiol-functionalized multi-wall carbon nanotubes, Diam. Relat. Mater. 20(7), 1046–1049 (2011)

    CAS  CrossRef  Google Scholar 

  360. P. Baviskar, P. Chavan, N. Kalyankar, B. Sankapal: Decoration of CdS nanoparticles on MWCNTʼs by simple solution chemistry, Appl. Surf. Sci. 258(19), 7536–7539 (2012)

    CAS  CrossRef  Google Scholar 

  361. N. Jia, Q. Lian, Z. Tian, X. Duan, M. Yin, L. Jing, S. Chen, H. Shen, M. Gao: Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes, Nanotechnology 21(4), 045606 (2010)

    CrossRef  CAS  Google Scholar 

  362. E.C. Dickey, C.A. Grimes, M.K. Jain, K.G. Ong, D. Qian, P.D. Kichambare, R. Andrews, D. Jacques: Visible photoluminescence from ruthenium-doped multiwall carbon nanotubes, Appl. Phys. Lett. 79(24), 4022–4024 (2001)

    CAS  CrossRef  Google Scholar 

  363. H.X. Wu, W.M. Cao, J. Wang, H. Yang, S.P. Yang: Coating multi-walled carbon nanotubes with rare-earth complexes by an in situ synthetic method, Nanotechnology 19(34), 345701–01–345701–05 (2008)

    CrossRef  CAS  Google Scholar 

  364. C.B. Chen, H. Zhang, N. Du, B. Zhang, Y. Wu, D. Shi, D. Yang: Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd Co-doped LaF3 as a multimodal imaging probe, J. Colloid and Interface Sci. 367, 61–66 (2012)

    CAS  CrossRef  Google Scholar 

  365. M. Olek, T. Busgen, M. Hilgendorff, M. Giersig: Quantum dot modified multiwall carbon nanotubes, J. Phys. Chem. B 110(26), 12901–12904 (2006)

    CAS  CrossRef  Google Scholar 

  366. N.A. Nismy, K. Jayawardena, A. Adikaari, S.R.P. Silva: Photoluminescence quenching in carbon nanotube-polymer/fullerene films, carbon nanotubes as exciton dissociation centres in organic photovoltaics, Adv. Mater. 23(33), 3796–3800 (2011)

    CAS  Google Scholar 

  367. A. Misra, P.K. Tyagi, P. Rai, D.S. Misra: FTIR spectroscopy of multiwalled carbon nanotubes: A simple approach to study the nitrogen doping, J. Nanosci. Nanotechnol. 7(6), 1820–1823 (2007)

    CAS  CrossRef  Google Scholar 

  368. N. Kouklin, M. Tzolov, D. Straus, A. Yin, J.M. Xu: Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition, Appl. Phys. Lett. 85(19), 4463–4465 (2004)

    CAS  CrossRef  Google Scholar 

  369. N.F. Yudanov, A.V. Okotrub, Y.V. Shubin, L.I. Yudanova, L.G. Bulusheva, A.L. Chuvilin, J.M. Bonard: Fluorination of arc-produced carbon material containing multiwall nanotubes, Chem. Mater. 14(4), 1472–1476 (2002)

    CAS  CrossRef  Google Scholar 

  370. T. Saito, K. Matsushige, K. Tanaka: Chemical treatment and modification of multi-walled carbon nanotubes, Physica B 323(1–4), 280–283 (2002)

    CAS  CrossRef  Google Scholar 

  371. L.Q. Liu, Y.J. Qin, Z.X. Guo, D.B. Zhu: Reduction of solubilized multi-walled carbon nanotubes, Carbon 41(2), 331–335 (2003)

    CAS  CrossRef  Google Scholar 

  372. M.E. Lipinska, S.L.H. Rebelo, M.F.R. Pereira, J. Gomes, C. Freire, J.L. Figueiredo: New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives, Carbon 50(9), 3280–3294 (2012)

    CAS  CrossRef  Google Scholar 

  373. H. Ago, T. Kugler, F. Cacialli, K. Petritsch, R.H. Friend, W.R. Salaneck, Y. Ono, T. Yamabe, K. Tanaka: Workfunction of purified and oxidised carbon nanotubes, Synth. Met. 103(1–3), 2494–2495 (1999)

    CAS  CrossRef  Google Scholar 

  374. H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend: Work functions and surface functional groups of multiwall carbon nanotubes, J. Phys. Chem. B 103(38), 8116–8121 (1999)

    CAS  CrossRef  Google Scholar 

  375. C.P. Ewels, M. Glerup: Nitrogen doping in carbon nanotubes, J. Nanosci. Nanotechnol. 5(9), 1345–1363 (2005)

    CAS  CrossRef  Google Scholar 

  376. T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown: High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs, Carbon 43(1), 153–161 (2005)

    CAS  CrossRef  Google Scholar 

  377. W. Xia, Y. Wang, R. Bergstrasser, S. Kundu, M. Muhler: Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption, Appl. Surf. Sci. 254(1), 247–250 (2007)

    CAS  CrossRef  Google Scholar 

  378. X.R. Ye, Y.H. Lin, C.M. Wang, M.H. Engelhard, Y. Wang, C.M. Wai: Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes, J. Mater. Chem. 14(5), 908–913 (2004)

    CAS  CrossRef  Google Scholar 

  379. X.M. Liu, J.L. Spencer, A.B. Kaiser, W.M. Arnold: Electric-field oriented carbon nanotubes in different dielectric solvents, Curr. Appl. Phys. 4(2–4), 125–128 (2004)

    CrossRef  Google Scholar 

  380. B.K. Zhu, S.H. Xie, Z.K. Xu, Y.Y. Xu: Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites, Compos. Sci. Technol. 66(3–4), 548–554 (2006)

    CAS  CrossRef  Google Scholar 

  381. C.A. Martin, J.K.W. Sandler, M.S.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte, A.H. Windle: Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites, Compos. Sci. Technol. 64(15), 2309–2316 (2004)

    CAS  CrossRef  Google Scholar 

  382. L. Wang, Z.M. Dang: Carbon nanotube composites with high dielectric constant at low percolation threshold, Appl. Phys. Lett. 87(4), 042903–01–042903–03 (2005)

    CrossRef  CAS  Google Scholar 

  383. I. Alig, D. Lellinger, M. Engel, T. Skipa, P. Potschke: Destruction and formation of a conductive carbon nanotube network in polymer melts: In-line experiments, Polymer 49(7), 1902–1909 (2008)

    CAS  CrossRef  Google Scholar 

  384. I.N. Mazov, V. Kuznetsov, S. Moseenkov, A. Usoltseva, A. Romanenko, O. Anikeeva, T. Buryakov, P. Kuzhir, S. Maksimenko, D. Bychanok, J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, P. Lambin: Electromagnetic shielding properties of MWCNT/PMMA composites in K a -band, Phys. Status Solidi (b) 246(11–12), 2662–2666 (2009)

    CAS  CrossRef  Google Scholar 

  385. I.M. De Rosa, A. Dinescu, F. Sarasini, M.S. Sarto, A. Tamburrano: Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers, Compos. Sci. Technol. 70(1), 102–109 (2010)

    CrossRef  CAS  Google Scholar 

  386. R. Rungsawang, V.G. Geethamma, E.P.J. Parrott, D.A. Ritchie, E.M. Terentjev: Terahertz spectroscopy of carbon nanotubes embedded in a deformable rubber, J. Appl. Phys. 103(12), 123503–01–123503–04 (2008)

    CrossRef  CAS  Google Scholar 

  387. J.A. Berres, G.W. Hanson: Multiwall carbon nanotubes at RF-THz frequencies, scattering, shielding, effective conductivity, and power dissipation, IEEE Trans. Antennas Propag. 59(8), 3098–3103 (2011)

    CrossRef  Google Scholar 

  388. T.F. Su, B. Yu, P.Y. Han, Y.L. Li, W. Li, G.Z. Zhao, C.R. Gong: Study on Terahertz spectra of multi-walled carbon nanotubes, Spectrosc. Spectr. Anal. 29(11), 3154–3157 (2009)

    CAS  Google Scholar 

  389. E.P.J. Parrott, J.A. Zeitler, J. McGregor, S.P. Oei, W.I. Milne, J.P. Tessonnier, D.S. Su, R. Schlögl, L.F. Gladden: The use of Terahertz spectroscopy as a sensitive probe in discriminating the electronic properties of structurally similar multi-walled carbon nanotubes, Adv. Mater. 21(38–39), 3953–3957 (2009)

    CAS  CrossRef  Google Scholar 

  390. V.C. Sanchez, J.R. Pietruska, N.R. Miselis, R.H. Hurt, A.B. Kane: Biopersistence and potential adverse health impacts of fibrous nanomaterials, what have we learned from asbestos?, Nanomed. Nanobiotechnol. 1(5), 511–529 (2009)

    CAS  CrossRef  Google Scholar 

  391. J. Muller, F. Huaux, D. Lison: Respiratory toxicity of carbon nanotubes, how worried should we be?, Carbon 44(6), 1048–1056 (2006)

    CAS  CrossRef  Google Scholar 

  392. A.K. Jain, N.K. Mehra, N. Lodhi, V. Dubey, D.K. Mishra, P.K. Jain, N.K. Jain: Carbon nanotubes and their toxicity, Nanotoxicology 1(3), 167–197 (2007)

    CAS  CrossRef  Google Scholar 

  393. J. Muller, F. Huaux, N. Moreau, P. Misson, J.F. Heilier, M. Delos, M. Arras, A. Fonseca, J.B. Nagy, D. Lison: Respiratory toxicity of multi-wall carbon nanotubes, Toxicol. Appl. Pharmacol. 207(3), 221–231 (2005)

    CAS  CrossRef  Google Scholar 

  394. E.J. Petersen, T.B. Henry: Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes, Rev. Environ. Toxicol. Chem. 31(1), 60–72 (2012)

    CAS  CrossRef  Google Scholar 

  395. A.A. Shvedova, E.R. Kisin, R. Mercer, A.R. Murray, V.J. Johnson, A.I. Potapovich, Y.Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A.F. Hubbs, J. Antonini, D.E. Evans, B.K. Ku, D. Ramsey, A. Maynard, V.E. Kagan, V. Castranova, P. Baron: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice, J. Am. Physiol. Lung Cell. Mol. Physiol. 289(5), L698–L708 (2005)

    CAS  CrossRef  Google Scholar 

  396. C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, K. Donaldson: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol. 3(7), 423–428 (2008)

    CAS  CrossRef  Google Scholar 

  397. T.A. Takagi, A. Hirose, T. Nishimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, J. Kanno: Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube, J. Toxicological Sciences 33(1), 105–116 (2008)

    CAS  CrossRef  Google Scholar 

  398. C.P. Firme, P.R. Bandaru: Toxicity issues in the application of carbon nanotubes to biological systems, Nanomed. Nanotechnol. Biol. Med. 6(2), 245–256 (2010)

    CAS  CrossRef  Google Scholar 

  399. A.A. Shvedova, E.R. Kisin, D. Porter, P. Schulte, V.E. Kagan, B. Fadeel, V. Castranova: Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus?, Pharmacol. Ther. 121(2), 192–204 (2009)

    CAS  CrossRef  Google Scholar 

  400. M. Endo, M.S. Strano, P.M. Ajayan: Potential applications of carbon nanotubes. In: Carbon Nanotubes, Topics in Applied Physics, Vol. 111, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin 2008) pp. 13–61

    CrossRef  Google Scholar 

  401. R. Smajda, A. Kukovecz, Z. Konya, I. Kiricsi: Structure and gas permeability of multi-wall carbon nanotube buckypapers, Carbon 45(6), 1176–1184 (2007)

    CAS  CrossRef  Google Scholar 

  402. S.M. Cooper, B.A. Cruden, M. Meyyappan, R. Raju, S. Roy: Gas transport characteristics through a carbon nanotubule, Nano Lett. 4(2), 377–381 (2004)

    CAS  CrossRef  Google Scholar 

  403. Y.H. An, S.M. Song: Fabrication of a CNT filter for a microdialysis chip, Mol. Cell. Toxicol. 2(4), 279–284 (2006)

    Google Scholar 

  404. C. Gao, Y.Z. Jin, H. Kong, R.L. Whitby, S.F. Acquah, G.Y. Chen, H. Qian, A. Hartschuh, S.R. Silva, S. Henley, P. Fearon, H.W. Kroto, D.R. Walton: Polyurea-functionalized multiwalled carbon nanotubes, synthesis, morphology, and Raman spectroscopy, J. Phys. Chem. B 109(24), 11925–11932 (2005)

    CAS  CrossRef  Google Scholar 

  405. M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley, R. Graupner: [2+1] cycloaddition for cross-linking SWCNTs, Carbon 42(5–6), 941–947 (2004)

    CAS  CrossRef  Google Scholar 

  406. A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajtai, P.M. Ajayan: Carbon nanotube filters, Nat. Mater. 3(9), 610–614 (2004)

    CAS  CrossRef  Google Scholar 

  407. C.L. Chen, X.K. Wang: Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes, Ind. Eng. Chem. Res. 45(26), 9144–9149 (2006)

    CAS  CrossRef  Google Scholar 

  408. G. Viswanathan, D.B. Kane, P.J. Lipowicz: High efficiency fine particulate filtration using carbon nanotube coatings, Adv. Mater. 16(22), 2045–2049 (2004)

    CAS  CrossRef  Google Scholar 

  409. C. Basheer, A.A. Ainedhary, B.S.M. Rao, S. Valliyaveettil, H.K. Lee: Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry, Anal. Chem. 78(8), 2853–2858 (2006)

    CAS  CrossRef  Google Scholar 

  410. J.X. Wang, D.Q. Jiang, Z.Y. Gu, X.P. Yan: Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection, J. Chromatogr. A 1137(1), 8–14 (2006)

    CAS  CrossRef  Google Scholar 

  411. L.P. Wang, H.X. Zhao, Y.M. Qiu, Z.Q. Zhou: Determination of four benzodiazepine residues in pork using multiwalled carbon nanotube solid-phase extraction and gas chromatography-mass spectrometry, J. Chromatogr. A 1136(1), 99–105 (2006)

    CAS  CrossRef  Google Scholar 

  412. B. Pan, B.S. Xing: Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol. 42(24), 9005–9013 (2008)

    CAS  CrossRef  Google Scholar 

  413. X.K. Wang, C.L. Chen, W.P. Hu, A.P. Ding, D. Xu, X. Zhou: Carbon nanotubes, Environ. Sci. Technol. 39(8), 2856–2860 (2005)

    CAS  CrossRef  Google Scholar 

  414. C.P. Li, Y.J. Zhang, X.C. Wang, J. Zhao, W. Chen: Removal and recovery of lead (II) ions from contaminated licorice extracts using oxidized multi-walled carbon nanotubes, J. Nanosci. Nanotechnol. 11(11), 9731–9736 (2011)

    CAS  CrossRef  Google Scholar 

  415. K. Pyrzynska, A. Stafiej: Sorption behavior of Cu(II), Pb(II), and Zn(II) onto carbon nanotubes, Solvent Extr. Ion Exchange 30(1), 41–53 (2012)

    CAS  CrossRef  Google Scholar 

  416. M.A. Salam, G. Al-Zhrani, S.A. Kosa: Simultaneous removal of copper(II), lead(II), zinc(II) and cadmium(II) from aqueous solutions by multi-walled carbon nanotubes, C. r. Chim. 15(5), 398–408 (2012)

    CAS  CrossRef  Google Scholar 

  417. M. Soylak, O. Ercan: Selective separation and preconcentration of copper (II) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes, J.  Hazard. Mater. 168(2–3), 1527–1531 (2009)

    CAS  CrossRef  Google Scholar 

  418. B.W. Yang, Q.J. Gong, L.P. Zhao, H. Sun, N.N. Ren, J.X. Qin, J. Xu, H.Y. Yang: Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS, Desalination 278(1–3), 65–69 (2011)

    CAS  CrossRef  Google Scholar 

  419. R.A. Doong, L.F. Chiang: Coupled removal of organic compounds and heavy metals by titanate/carbon nanotube composites, Water Sci. Technol. 58(10), 1985–1992 (2008)

    CAS  CrossRef  Google Scholar 

  420. H. Wang, N. Yan, Y. Li, X.H. Zhou, J. Chen, B.X. Yu, M. Gong, Q.W. Chen: Fe nanoparticle-functionalized multi-walled carbon nanotubes, one-pot synthesis and their applications in magnetic removal of heavy metal ions, J. Mater. Chem. 22(18), 9230–9236 (2012)

    CAS  CrossRef  Google Scholar 

  421. H. Liu, J. Zhai, L. Jiang: Wetting and anti-wetting on aligned carbon nanotube films, Soft Matter. 2(10), 811–821 (2006)

    CAS  CrossRef  Google Scholar 

  422. S. Banerjee, T. Hemraj-Benny, S.S. Wong: Covalent surface chemistry of single-walled carbon nanotubes, Adv. Mater. 17(1), 17–29 (2005)

    CAS  CrossRef  Google Scholar 

  423. R. Smajda, A. Kukovecz, H. Haspel, Z. Konya, R. Rajko, I. Kiricsi: Buckypaper Gas Chromatograph, Evaporation Profile Based Identification of Liquid Analytes Using Multi-Wall Carbon Nanotube Films, SZTE-KNRET Annual Report (2008), ed. by Gabor Szabó (Univ. of Szeged, Szeged 2008)

    Google Scholar 

  424. L.M. Yuan, C.X. Ren, L. Li, P. Ai, Z.H. Yan, M. Zi, Z.Y. Li: Single-walled carbon nanotubes used as stationary phase in GC, Anal. Chem. 78(18), 6384–6390 (2006)

    CAS  CrossRef  Google Scholar 

  425. M. Karwa, S. Mitra: Gas chromatography on self-assembled single-walled carbon nanotubes, Anal. Chem. 78(6), 2064–2070 (2006)

    CAS  CrossRef  Google Scholar 

  426. M. Valcarcel, S. Cardenas, B.M. Simonet: Role of carbon nanotubes in analytical science, Anal. Chem. 79(13), 4788–4797 (2007)

    CAS  CrossRef  Google Scholar 

  427. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.H. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116(17), 7935–7936 (1994)

    CAS  CrossRef  Google Scholar 

  428. P. Serp, M. Corrias, P. Kalck: Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A 253(2), 337–358 (2003)

    CAS  CrossRef  Google Scholar 

  429. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes, Science 306(5700), 1362–1364 (2004)

    CAS  CrossRef  Google Scholar 

  430. G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P. Kamat: Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells, Langmuir 21(18), 8487–8494 (2005)

    CAS  CrossRef  Google Scholar 

  431. T. Onoe, S. Iwamoto, M. Inoue: Synthesis and activity of the Pt catalyst supported on CNT, Catal. Commun. 8(4), 701–706 (2007)

    CAS  CrossRef  Google Scholar 

  432. B. Pawelec, V. La Parola, R.M. Navarro, S. Murcia-Mascaros, J.L.G. Fierro: On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of aromatics, Carbon 44(1), 84–98 (2006)

    CAS  CrossRef  Google Scholar 

  433. E. Auer, A. Freund, J. Pietsch, T. Tacke: Carbons as supports for industrial precious metal catalysts, Appl. Catal. A 173(2), 259–271 (1998)

    CAS  CrossRef  Google Scholar 

  434. X.L. Pan, Z.L. Fan, W. Chen, Y.J. Ding, H.Y. Luo, X.H. Bao: Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater. 6(7), 507–511 (2007)

    CAS  CrossRef  Google Scholar 

  435. I. Kiricsi, Z. Konya, K. Niesz, A. Koos, L.P. Biro: Synthesis procedures for production of carbon nanotube junctions. In: Nanotechnology, Proc. SPIE, Vol. 5118, ed. by R. Vajtai, X. Aymerich, L.B. Kish, A. Rubio (SPIE, Maspalomas 2003) pp. 280–287

    CrossRef  Google Scholar 

  436. B. Pietruszka, F. Di Gregorio, N. Keller, V. Keller: High-efficiency WO3/carbon nanotubes for olefin skeletal isomerization, Catal. Today 102, 94–100 (2005)

    CrossRef  CAS  Google Scholar 

  437. G. Ovejero, J.L. Sotelo, A. Rodriguez, C. Diaz, R. Sanz, J. Garcia: Platinum catalyst on multiwalled carbon nanotubes for the catalytic wet air oxidation of phenol, Ind. Eng. Chem. Res. 46(20), 6449–6455 (2007)

    CAS  CrossRef  Google Scholar 

  438. M.C. Bahome, L.L. Jewell, D. Hildebrandt, D. Glasser, N.J. Coville: Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes, Appl. Catal. A 287(1), 60–67 (2005)

    CAS  CrossRef  Google Scholar 

  439. M.J. Ledoux, C. Pham-Huu: Carbon nanostructures with macroscopic shaping for catalytic applications, Catal. Today 102, 2–14 (2005)

    CrossRef  CAS  Google Scholar 

  440. J.F. AuBuchon, L.H. Chen, C. Daraio, S.H. Jin: Multibranching carbon nanotubes via self-seeded catalysts, Nano Lett. 6(2), 324–328 (2006)

    CAS  CrossRef  Google Scholar 

  441. S. Bose, R.A. Khare, P. Moldenaers: Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review, Polymer 51(5), 975–993 (2010)

    CAS  CrossRef  Google Scholar 

  442. P. Verge, S. Benali, L. Bonnaud, A. Minoia, M. Mainil, R. Lazzaroni, P. Dubois: Unpredictable dispersion states of MWNTs in HDPE: A comparative and comprehensive study, Euro. Polymer J. 48(4), 677–683 (2012)

    CAS  CrossRef  Google Scholar 

  443. X.L. Xie, Y.W. Mai, X.P. Zhou: Dispersion and alignment of carbon nanotubes in polymer matrix, a review, Mater. Sci. Eng. R 49(4), 89–112 (2005)

    CrossRef  CAS  Google Scholar 

  444. A. Dombovari, N. Halonen, A. Sapi, M. Szabo, G. Toth, J. Maklin, K. Kordas, J. Juceti, H. Jantusen, A. Kukovecz, Z. Konya: Moderate anisotropy in the electrical conductivity of bulk MWCNT/epoxy composites, Carbon 48(7), 1918–1925 (2010)

    CAS  CrossRef  Google Scholar 

  445. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gunʼko: Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, Carbon 44(9), 1624–1652 (2006)

    CAS  CrossRef  Google Scholar 

  446. J.N. Coleman, U. Khan, Y.K. Gunʼko: Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater. 18(6), 689–706 (2006)

    CAS  CrossRef  Google Scholar 

  447. M. Moniruzzaman, K.I. Winey: Polymer nanocomposites containing carbon nanotubes, Macromolecules 39(16), 5194–5205 (2006)

    CAS  CrossRef  Google Scholar 

  448. W. Bauhofer, J.Z. Kovacs: A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69(10), 1486–1498 (2009)

    CAS  CrossRef  Google Scholar 

  449. M.T. Byrne, Y.K. Gunʼko: Recent advances in research on carbon nanotube-polymer composites, Adv. Mater. 22(15), 1672–1688 (2010)

    CAS  CrossRef  Google Scholar 

  450. T.W. Chou, L.M. Gao, E.T. Thostenson, Z.G. Zhang, J.H. Byun: An assessment of the science and technology of carbon nanotube-based fibers and composites, Compos. Sci. Technol. 70(1), 1–19 (2010)

    CAS  CrossRef  Google Scholar 

  451. P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites, a review, Compos. A 41(10), 1345–1367 (2010)

    CrossRef  CAS  Google Scholar 

  452. H. Qian, E.S. Greenhalgh, M.S.P. Shaffer, A. Bismarck: Carbon nanotube-based hierarchical composites: A review, J. Mater. Chem. 20(23), 4751–4762 (2010)

    CAS  CrossRef  Google Scholar 

  453. N.G. Sahoo, S. Rana, J.W. Cho, L. Li, S.H. Chan: Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci. 35(7), 837–867 (2010)

    CAS  CrossRef  Google Scholar 

  454. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis: Carbon nanotube-polymer composites, chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci. 35(3), 357–401 (2010)

    CAS  CrossRef  Google Scholar 

  455. D.D.L. Chung: Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing, Carbon 50(9), 3342–3353 (2012)

    CAS  CrossRef  Google Scholar 

  456. S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin: The biocompatibility of carbon nanotubes, Carbon 44(6), 1034–1047 (2006)

    CAS  CrossRef  Google Scholar 

  457. G.D. Zhan, J.D. Kuntz, J.L. Wan, A.K. Mukherjee: Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites, Nat. Mater. 2(1), 38–42 (2003)

    CAS  CrossRef  Google Scholar 

  458. G.L. Hwang, K.C. Hwang: Carbon nanotube reinforced ceramics, J. Mater. Chem. 11(6), 1722–1725 (2001)

    CAS  CrossRef  Google Scholar 

  459. F.F. Zhang, X.L. Wang, C.X. Li, X.H. Li, Q. Wan, Y.Z. Xian, L.T. Jin, K. Yamamoto: Assay for uric acid level in rat striatum by a reagentless biosensor based on functionalized multi-wall carbon nanotubes with tin oxide, Anal. Bioanal. Chem. 382(6), 1368–1373 (2005)

    CAS  CrossRef  Google Scholar 

  460. Z.Y. Wang, G. Chen, D.G. Xia: Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery, J.  Power Sources 184(2), 432–436 (2008)

    CAS  CrossRef  Google Scholar 

  461. G.D. Du, C. Zhong, P. Zhang, Z.P. Guo, Z.X. Chen, H.K. Liu: Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries, Electrochim. Acta 55(7), 2582–2586 (2010)

    CAS  CrossRef  Google Scholar 

  462. L. Noerochim, J.Z. Wang, S.L. Chou, H.J. Li, H.K. Liu: SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries, Electrochim. Acta 56(1), 314–320 (2010)

    CAS  CrossRef  Google Scholar 

  463. W.D. Wang, P. Serp, P. Kalck, J.L. Faria: Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method, J.  Mol. Catal. A 235(1/2), 194–199 (2005)

    CAS  CrossRef  Google Scholar 

  464. M. Daranyi, T. Csesznok, A. Kukovecz, Z. Konya, I. Kiricsi, P.M. Ajayan, R. Vajtai: Layer-by-layer assembly of TiO2 nanowire/carbon nanotube films and characterization of their photocatalytic activity, Nanotechnology 22(19), 195701 (2011)

    CrossRef  CAS  Google Scholar 

  465. X. Dong, H.B. Zhang, G.D. Lin, Y.Z. Yuan, K.R. Tsai: Highly active CNT-promoted Cu-ZnO-Al2O3 catalyst for methanol synthesis from H2/CO/CO2, Catal. Lett. 85(3–4), 237–246 (2003)

    CAS  CrossRef  Google Scholar 

  466. L.Q. Jiang, L. Gao: Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity, Mater. Chem. Phys. 91(2–3), 313–316 (2005)

    CAS  CrossRef  Google Scholar 

  467. L.P. Zhu, G.H. Liao, W.Y. Huang, L.L. Ma, Y. Yang, Y. Yu, S.Y. Fu: Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes, Mater. Sci. Eng. B 163(3), 194–198 (2009)

    CAS  CrossRef  Google Scholar 

  468. Y.T. Wang, L. Yu, Z.Q. Zhu, J. Zhang, J.Z. Zhu: Novel uric acid sensor based on enzyme electrode modified by ZnO nanoparticles and multiwall carbon nanotubes, Anal. Lett. 42(5), 775–789 (2009)

    CAS  CrossRef  Google Scholar 

  469. C.H. Zhang, G.F. Wang, M. Liu, Y.H. Feng, Z.D. Zhang, B. Fang: A hydroxylamine electrochemical sensor based on electrodeposition of porous ZnO nanofilms onto carbon nanotubes films modified electrode, Electrochim. Acta 55(8), 2835–2840 (2010)

    CAS  CrossRef  Google Scholar 

  470. A. Kukovecz, T. Kanyo, Z. Konya, I. Kiricsi: Morphological characterization of mesoporous silicate-carbon nanocomposites, Microporous Mesoporous Mater. 80(1–3), 85–94 (2005)

    CAS  CrossRef  Google Scholar 

  471. R. Smajda, Z. Gyori, A. Sapi, M. Veres, A. Oszko, J. Kis-Csitari, A. Kukovecz, Z. Konya, I. Kiricsi: Spectroscopic studies on self-supporting multi-wall carbon nanotube based composite films for sensor applications, J. Mol. Struct. 834, 471–476 (2007)

    CrossRef  CAS  Google Scholar 

  472. C. Balazsi, B. Fenyi, N. Hegman, Z. Kover, F. Weber, Z. Vertesy, Z. Konya, I. Kiricsi, L.P. Biro, P. Arato: Development of CNT/Si3N4 composites with improved mechanical and electrical properties, Compos. B 37(6), 418–424 (2006)

    CrossRef  CAS  Google Scholar 

  473. A.R. Boccaccini, B.J.C. Thomas, G. Brusatin, P. Colombo: Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes, J. Mater. Sci. 42(6), 2030–2036 (2007)

    CAS  CrossRef  Google Scholar 

  474. T. Kuzumaki, O. Ujiie, H. Ichinose, K. Ito: Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Engrg. Mater. 2(7), 416–418 (2000)

    CAS  CrossRef  Google Scholar 

  475. W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, X.B. Zhang: Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon 41(2), 215–222 (2003)

    CAS  CrossRef  Google Scholar 

  476. X.H. Chen, J.T. Xia, J.C. Peng, W.Z. Li, S.S. Xie: Carbon-nanotube metal-matrix composites prepared by electroless plating, Compos. Sci. Technol. 60(2), 301–306 (2000)

    CAS  CrossRef  Google Scholar 

  477. J.H. Jang, K.S. Han: Fabrication of graphite nanofibers reinforced metal matrix composites by powder metallurgy and their mechanical and physical characteristics, J. Compos. Mater. 41(12), 1431–1443 (2007)

    CAS  CrossRef  Google Scholar 

  478. E. Carreno-Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, L. Forró, R. Schaller: Carbon nanotube/magnesium composites, Phys. Status Solidi (a) 201(8), R53–R55 (2004)

    CAS  CrossRef  Google Scholar 

  479. A. Goyal, D.A. Wiegand, F.J. Owens, Z. Iqbal: Synthesis of carbide-free, high strength iron-carbon nanotube composite by in situ nanotube growth, Chem. Phys. Lett. 442(4–6), 365–371 (2007)

    CAS  CrossRef  Google Scholar 

  480. M. Reibold, P. Paufler, A.A. Levin, W. Kochmann, N. Patzke, D.C. Meyer: Materials – Carbon nanotubes in an ancient Damascus sabre, Nature 444(7117), 286 (2006)

    CAS  CrossRef  Google Scholar 

  481. H.Y. Chen, M.H. Chen, J.T. Di, G. Xu, H.B. Li, Q.W. Li: Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials, J. Phys. Chem. C 116(6), 3903–3909 (2012)

    CAS  CrossRef  Google Scholar 

  482. Z.D. Han, A. Fina: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci. 36(7), 914–944 (2011)

    CAS  CrossRef  Google Scholar 

  483. A. Di Bartolomeo, M. Sarno, F. Giubileo, C. Altavilla, L. Iemmo, S. Piano, F. Bobba, M. Longobardi, A. Scarfato, D. Sannino, A.M. Cucolo, P. Ciambelli: Multiwalled carbon nanotube films as small-sized temperature sensors, J. Appl. Phys. 105(6), 064518 (2009)

    CrossRef  CAS  Google Scholar 

  484. A. Kukovecz, R. Smajda, M. Oze, H. Haspel, Z. Konya, I. Kiricsi: Pyroelectric temperature sensitization of multi-wall carbon nanotube papers, Carbon 46(9), 1262–1265 (2008)

    CAS  CrossRef  Google Scholar 

  485. W. Zhou, Y. Huang, B. Liu, J. Wu, K.C. Hwang, B.Q. Wei: Adhesion between carbon nanotubes and substrate: Mimicking the gecko foot-hair, Nano 2(3), 175–179 (2007)

    CAS  CrossRef  Google Scholar 

  486. Y.M. Fu, P. Zhang: Peeling off carbon nanotubes from rigid substrates, an exact model, J. Adhes. Sci. Technol. 25(10), 1061–1072 (2011)

    CAS  CrossRef  Google Scholar 

  487. S. Sotiropoulou, N.A. Chaniotakis: Carbon nanotube array-based biosensor, Anal. Bioanal. Chem. 375(1), 103–105 (2003)

    CAS  Google Scholar 

  488. A. Merkoçi, M. Pumera, X. Llopis, B. Pérez, M. del Valle, S. Alegret: New materials for electrochemical sensing VI: Carbon nanotubes, TrAC-Trends Anal. Chem. 24(9), 826–838 (2005)

    CrossRef  CAS  Google Scholar 

  489. M. Musameh, J. Wang, A. Merkoçi, Y.H. Lin: Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 4(10), 743–746 (2002)

    CAS  CrossRef  Google Scholar 

  490. J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu: Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochem. Commun. 6(1), 66–70 (2004)

    CAS  CrossRef  Google Scholar 

  491. K.A. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen, A. Mulchandani: A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode, Electroanalysis 17(1), 54–58 (2005)

    CAS  CrossRef  Google Scholar 

  492. R. Xue, T.F. Kang, L.P. Lu, S.Y. Cheng: Immobilization of acetylcholinesterase via biocompatible interface of silk fibroin for detection of organophosphate and carbamate pesticides, Appl. Surface Sci. 258(16), 6040–6045 (2012)

    CAS  CrossRef  Google Scholar 

  493. G. Li, J.M. Liao, G.Q. Hu, N.Z. Ma, P.J. Wu: Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood, Biosens. Bioelectron. 20(10), 2140–2144 (2005)

    CAS  CrossRef  Google Scholar 

  494. X.C. Tan, M.J. Ll, P.X. Cai, L.J. Luo, X.Y. Zou: An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film, Anal. Biochem. 337(1), 111–120 (2005)

    CAS  CrossRef  Google Scholar 

  495. G.C. Zhao, Z.Z. Yin, L. Zhang, X.W. Wei: Direct electrochemistry of cytochrome C on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2, Electrochem. Commun. 7(3), 256–260 (2005)

    CAS  CrossRef  Google Scholar 

  496. L. Qian, X.R. Yang: Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor, Talanta 68(3), 721–727 (2006)

    CAS  CrossRef  Google Scholar 

  497. L.J. Liu, F. Zhang, F.N. Xi, X.F. Lin: Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics, Biosens. Bioelectron. 24(2), 306–312 (2008)

    CrossRef  CAS  Google Scholar 

  498. S. Hashemnia, S. Khayatzadeh, M. Hashemnia: Electrochemical detection of phenolic compounds using composite film of multiwall carbon nanotube/surfactants/tyrosinase on a carbon paste electrode, J.  Solid State Electrochem. 16(2), 473–479 (2012)

    CAS  CrossRef  Google Scholar 

  499. S.K. Kim, S. Jeon: Simultaneous determination of serotonin and dopamine at the PEDOP/MWCNTs-Pd nanoparticle modified glassy carbon electrode, J. Nanosci. Nanotechnol. 12(3), 1903–1909 (2012)

    CAS  CrossRef  Google Scholar 

  500. J.B. Raoof, R. Ojani, M. Baghayeri, M. Amiri-Aref: Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes as a sensor device for simultaneous determination of acetaminophen and tyramine, Anal. Methods 4(6), 1579–1587 (2012)

    CAS  CrossRef  Google Scholar 

  501. L. Zhou, D.J. Li, L. Gai, J.P. Wang, Y.B. Li: Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification, Sens. Actuators B 162(1), 201–208 (2012)

    CAS  CrossRef  Google Scholar 

  502. R. Singh, R. Verma, G. Sumana, A.K. Srivastava, S. Sood, R.K. Gupta, B.D. Malhotra: Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection, Bioelectrochemistry 86, 30–37 (2012)

    CAS  CrossRef  Google Scholar 

  503. M. Foldvari, M. Bagonluri: Carbon nanotubes as functional excipients for nanomedicines, II. Drug delivery and biocompatibility issues, Nanomed-Nanotechnol. Biol. Med. 4(3), 183–200 (2008)

    CAS  CrossRef  Google Scholar 

  504. Y. Rosen, N.M. Elman: Carbon nanotubes in drug delivery, focus on infectious diseases, Expert Opinion Drug Delivery 6(5), 517–530 (2009)

    CAS  CrossRef  Google Scholar 

  505. J.S. Im, B.C. Bai, Y.S. Lee: The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system, Biomaterials 31(6), 1414–1419 (2010)

    CAS  CrossRef  Google Scholar 

  506. E. Mehdipoor, M. Adeli, M. Bavadi, P. Sasanpour, B. Rashidian: A possible anticancer drug delivery system based on carbon nanotube-dendrimer hybrid nanomaterials, J.  Mater. Chem. 21(39), 15456–15463 (2011)

    CAS  CrossRef  Google Scholar 

  507. N. Aoki, T. Akasaka, F. Watari, A. Yokoyama: Carbon nanotubes as scaffolds for cell culture and effect on cellular functions, Dent. Mater. J. 26(2), 178–185 (2007)

    CAS  CrossRef  Google Scholar 

  508. A.R. Boccaccini, F. Chicatun, J. Cho, O. Bretcanu, J.A. Roether, S. Novak, Q.Z. Chen: Carbon nanotube coatings on bioglass-based tissue engineering scaffolds, Adv. Funct. Mater. 17(15), 2815–2822 (2007)

    CAS  CrossRef  Google Scholar 

  509. P. Galvan-Garcia, E.W. Keefer, F. Yang, M. Zhang, S. Fang, A.A. Zakhidov, R.H. Baughman, M.I. Romero: Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns, J. Biomaterials Science-Polymer Edition 18(10), 1245–1261 (2007)

    CAS  CrossRef  Google Scholar 

  510. S. Mwenifumbo, M.S. Shaffer, M.M. Stevens: Exploring cellular behaviour with multi-walled carbon nanotube constructs, J. Mater. Chem. 17(19), 1894–1902 (2007)

    CAS  CrossRef  Google Scholar 

  511. J.A. Rojas-Chapana, M. Giersig: Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine, J. Nanosci. Nanotechnol. 6(2), 316–321 (2006)

    CAS  Google Scholar 

  512. G.F. Close, S. Yasuda, B.C. Paul, S. Fujita, H.S.P. Wong: Measurement of subnanosecond delay through multiwall carbon-nanotube local interconnects in a CMOS integrated circuit, IEEE Trans. Electron Devices 56(1), 43–49 (2009)

    CAS  CrossRef  Google Scholar 

  513. E.P. Li, X.C. Wei, A.C. Cangellaris, E.X. Liu, Y.J. Zhang, M. DʼAmore, J. Kim, T. Sudo: Progress review of electromagnetic compatibility analysis technologies for packages, printed circuit boards, and novel interconnects, IEEE. Trans. Electromagn. Compat. 52(2), 248–265 (2010)

    CrossRef  Google Scholar 

  514. A. Naeemi, J.D. Meindl: Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems, IEEE. Trans Electron Devices 55(10), 2574–2582 (2008)

    CAS  CrossRef  Google Scholar 

  515. M.R.S. Castro, H.K. Schmidt: Preparation and characterization of low- and high-adherent transparent multi-walled carbon nanotube thin films, Mater. Chem. Phys. 111(2–3), 317–321 (2008)

    CAS  CrossRef  Google Scholar 

  516. R.A. Hatton, A.J. Miller, S.R.P. Silva: Carbon nanotubes, a multi-functional material for organic optoelectronics, J. Mater. Chem. 18(11), 1183–1192 (2008)

    CAS  CrossRef  Google Scholar 

  517. R. Ulbricht, S.B. Lee, X.M. Jiang, K. Inoue, M. Zhang, S.L. Fang, R.H. Baughman, A.A. Zakhidov: Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells, Sol. Energy Mater. Sol. Cells 91(5), 416–419 (2007)

    CAS  CrossRef  Google Scholar 

  518. K. Sheem, Y.H. Lee, H.S. Lim: High-density positive electrodes containing carbon nanotubes for use in Li-ion cells, J. Power Sources 158(2), 1425–1430 (2006)

    CAS  CrossRef  Google Scholar 

  519. Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, H.M. Cheng: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries, Electrochim. Acta. 51(23), 4994–5000 (2006)

    CAS  CrossRef  Google Scholar 

  520. B.J. Landi, R.A. Dileo, C.M. Schauerman, C.D. Cress, M.J. Ganter, R.P. Raffaelle: Multi-walled carbon nanotube paper anodes for lithium ion batteries, J. Nanosci. Nanotechnol. 9(6), 3406–3410 (2009)

    CAS  CrossRef  Google Scholar 

  521. C. Masarapu, V. Subramanian, H.W. Zhu, B.Q. Wei: Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries, Adv. Funct. Mater. 19(7), 1008–1014 (2009)

    CAS  CrossRef  Google Scholar 

  522. L. Kavan, R. Bacsa, M. Tunckol, P. Serp, S.M. Zakeeruddin, F. Le Formal, M. Zukalova, M. Graetzel: Multi-walled carbon nanotubes functionalized by carboxylic groups: Activation of TiO2 (anatase) and phosphate olivines (LiMnPO4, LiFePO4) for electrochemical Li-storage, J.  Power Sources 195(16), 5360–5369 (2010)

    CAS  CrossRef  Google Scholar 

  523. I. Lahiri, S.W. Oh, J.Y. Hwang, S. Cho, Y.K. Sun, R. Banerjee, W. Choi: High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper, ACS Nano. 4(6), 3440–3446 (2010)

    CAS  CrossRef  Google Scholar 

  524. W. Wang, P.N. Kumta: Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes, Acs Nano. 4(4), 2233–2241 (2010)

    CAS  CrossRef  Google Scholar 

  525. J.T. Li, W. Lei, X.B. Zhang, B.P. Wang, L. Ba: Field emission of vertically-aligned carbon nanotube arrays grown on porous silicon substrate, Solid-State Electron. 48(12), 2147–2151 (2004)

    CAS  CrossRef  Google Scholar 

  526. J.T. Li, W. Lei, X.B. Zhang, X.D. Zhou, Q.L. Wang, Y.N. Zhang, B.P. Wang: Field emission characteristic of screen-printed carbon nanotube cathode, Appl. Surface Sci. 220(1–4), 96–104 (2003)

    CAS  CrossRef  Google Scholar 

  527. K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen, C. Soldano, S. Talapatra, S. Kar, R. Vajtai, P.M. Ajayan: Inkjet printing of electrically conductive patterns of carbon nanotubes, Small 2(8–9), 1021–1025 (2006)

    CrossRef  CAS  Google Scholar 

  528. M.I.H. Panhuis, A. Heurtematte, W.R. Small, V.N. Paunov: Inkjet printed water sensitive transparent films from natural gum-carbon nanotube composites, Soft Matter. 3(7), 840–843 (2007)

    CrossRef  CAS  Google Scholar 

  529. H. Haspel, R. Ionescu, P. Heszler, A. Kukovecz, Z. Konya, Z. Gingl, J. Mäklin, T. Mustonen, K. Kordas, R. Vajtai, P.M. Ajayan: Fluctuation enhanced gas sensing on functionalized carbon nanotube thin films, Phys. Status Solidi (b) 245(10), 2339–2342 (2008)

    CAS  CrossRef  Google Scholar 

  530. W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi: Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity, Nano Lett. 12(5), 2283–2288 (2012)

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ákos Kukovecz , Gábor Kozma or Zoltán Kónya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Kukovecz, Á., Kozma, G., Kónya, Z. (2013). Multi-Walled Carbon Nanotubes. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_5

Download citation