Single-Walled Carbon Nanotubes

Abstract

Single-walled carbon nanotubes (SWCNTs) are hollow, long cylinders with extremely large aspect ratios, made of one atomic sheet of carbon atoms in a honeycomb lattice. They possess extraordinary thermal, mechanical, and electrical properties and are considered as one of the most promising nanomaterials for applications and basic research. This chapter describes the structural, electronic, vibrational, optical, transport, mechanical, and thermal properties of these unusual one-dimensional (1-D) nanomaterials. The crystallographic (Sect. 4.2.1), electronic (Sect. 4.2.2), vibrational (Sect. 4.2.3), optical (Sect. 4.4), transport (Sect. 4.5), thermal (Sect. 4.6.1), and mechanical (Sect. 4.6.2) properties of these unusual 1-D nanomaterials will be outlined. In addition, we will provide an overview of the various methods developed for synthesizing SWCNTs in Sect. 4.3.

Even after more than two decades of extensive basic studies since their discovery, carbon nanotubes continue to surprise researchers with potential new applications and interesting discoveries of novel phenomena and properties. Because of an enormous thrust towards finding practical applications, carbon nanotube research is actively being pursued in diverse areas including energy storage, molecular electronics, nanomechanical devices, composites, and chemical and bio-sensing.

Structurally, carbon nanotubes are made up of sp2-bonded carbon atoms, like graphite, and can be conceptually viewed as rolled-up sheets of single-layer graphite, or graphene. Their diameter typically lies in the nanometer range while their length often exceeds microns, sometimes centimeters, thus making them 1-D nanostructures. Depending on the number of tubes that are arranged concentrically, carbon nanotubes are further classified into single-walled and multi- walled nanotubes. Single-walled carbon nanotubes, the subject of this chapter, are especially interesting. They are ideal materials in which to explore one-dimensional physics and strong Coulomb correlations. In addition, their cylindrical topology allows them to exhibit nonintuitive quantum phenomena when placed in a parallel magnetic field, due to the Aharonov–Bohm effect. A number of research groups have found exotic many-body effects through a variety of transport, optical, magnetic, and photoemission experiments.

Their electronic properties are very sensitive to their microscopic atomic arrangements and symmetry, covering a wide spectrum of energy scales. They can be either metallic or semiconducting with varying band gaps, depending on their diameter and chirality. Semiconducting nanotubes are particularly promising for photonic device applications with their diameter-dependent, direct band gaps, while metallic tubes are considered to be ideal candidates for a variety of electronic applications such as nanocircuit components and power transmission cables.

Abbreviations

1-D

one-dimensional

2-D

two-dimensional

3-D

three-dimensional

AC

alternating current

AD

arc discharge

AFM

atomic force microscopy

Ab

antibody

CNT

carbon nanotube

CO

cuboctahedron

CP

coherent phonon

CVD

chemical vapor deposition

DC

direct current

DOS

density of states

FFT

fast Fourier transform

FIT

fluctuation-induced tunneling

GTBMD

generalized tight-binding molecular dynamics

HRTEM

high-resolution transmission electron microscopy

IR

infrared

LA

longitudinal acoustic

MD

molecular dynamics

MWCNT

multiwalled carbon nanotube

MWNT

multiwalled nanotubes

PL

photoluminescence

PLE

photoluminescence excitation

RBM

radial breathing mode

RRS

resonant Raman scattering

S–W

Stone–Wales

SDS

sodium dodecyl sulfate

SEM

scanning electron microscopy

SWCNT

single-walled carbon nanotube

SWNT

single-walled nanotube

TA

transverse acoustic

TEM

transmission electron microscopy

UV

ultraviolet

VHS

van Hove singularity

VLS

vapor–solid–liquid

VRH

variable range hopping

VSS

vapor–solid–solid

Van

vancomycin

References

  1. 4.1.
    S. Iijima: Helical microtubules of graphitic carbon, Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  2. 4.2.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Topics in Applied Physics, Vol. 80 (Springer, Berlin, Heidelberg 2001)Google Scholar
  3. 4.3.
    S. Reich, C. Thomsen, J. Maultzsch: Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim 2004)Google Scholar
  4. 4.4.
    M.J. OʼConnell (Ed.): Carbon Nanotubes: Properties and Applications (CRC, Boca Raton 2006)Google Scholar
  5. 4.5.
    A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Eds.): Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Topics in Applied Physics, Vol. 111 (Springer, Berlin, Heidelberg 2008)Google Scholar
  6. 4.6.
    T. Giamarchi: Quantum Physics in One Dimension (Oxford Univ. Press, Oxford 2004)Google Scholar
  7. 4.7.
    P. Avouris, M. Freitag, V. Perebeinos: Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2, 341–350 (2008)CrossRefGoogle Scholar
  8. 4.8.
    S. Nanot, E.H. Hároz, J.-H. Kim, R.H. Hauge, J. Kono: Optoelectronic properties of single-wall carbon nanotubes, Adv. Mater. 24, 4977–4994 (2012)CrossRefGoogle Scholar
  9. 4.9.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito: Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett. 10, 751–758 (2010)CrossRefGoogle Scholar
  10. 4.10.
    H. Ajiki, T. Ando: Aharonov–Bohm effect in carbon nanotubes, Physica B 201, 349–352 (1994)CrossRefGoogle Scholar
  11. 4.11.
    M.F. Islam, D.E. Milkie, C.L. Kane, A.G. Yodh, J.M. Kikkawa: Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes, Phys. Rev. Lett. 93, 037404 (2004)CrossRefGoogle Scholar
  12. 4.12.
    Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama: Polarization dependence of the optical absorption of single-walled carbon nanotubes, Phys. Rev. Lett. 94, 087402 (2005)CrossRefGoogle Scholar
  13. 4.13.
    H. Ajiki, T. Ando: Magnetic properties of carbon nanotubes, J. Phys. Soc. Jpn. 62, 2470–2480 (1993)CrossRefGoogle Scholar
  14. 4.14.
    J.P. Lu: Novel magnetic properties of carbon nanotubes, Phys. Rev. Lett. 74, 1123–1126 (1995)CrossRefGoogle Scholar
  15. 4.15.
    S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, R.H. Hauge, R.E. Smalley, X. Wei: Estimation of magnetic susceptibility anisotropy of carbon nanotubes using magneto-photoluminescence, Nano Lett. 4, 2219–2221 (2004)CrossRefGoogle Scholar
  16. 4.16.
    M.F. Islam, D.E. Milkie, O.N. Torrens, A.G. Yodh, J.M. Kikkawa: Magnetic heterogeneity and alignment of single wall carbon nanotubes, Phys. Rev. B 71, 201401 (2005)CrossRefGoogle Scholar
  17. 4.17.
    T.A. Searles, Y. Imanaka, T. Takamasu, H. Ajiki, J.A. Fagan, E.K. Hobbie, J. Kono: Large anisotropy in the magnetic susceptibility of metallic carbon nanotubes, Phys. Rev. Lett. 105, 017403 (2010)CrossRefGoogle Scholar
  18. 4.18.
    T.-I. Jeon, K.-J. Kim, C. Kang, S.-J. Oh, J.-H. Son, K.H. An, D.J. Bae, Y.H. Lee: Terahertz conductivity of anisotropic single walled carbon nanotube films, Appl. Phys. Lett. 80, 3403–3405 (2002)CrossRefGoogle Scholar
  19. 4.19.
    L. Ren, C.L. Pint, L.G. Booshehri, W.D. Rice, X. Wang, D.J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono: Carbon nanotube terahertz polarizer, Nano Lett. 9, 2610–2613 (2009)CrossRefGoogle Scholar
  20. 4.20.
    J. Kyoung, E.-Y. Jang, M.D. Lima, H.-R. Park, R.-O. Robls, X. Lepro, Y.-H. Kim, R.H. Baughman, D.-S. Kim: A reel-wound carbon nanotube polarizer for terahertz frequencies, Nano Lett. 11, 4227–4231 (2011)CrossRefGoogle Scholar
  21. 4.21.
    L. Ren, C.L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, J. Kono: Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks, Nano Lett. 12, 787–790 (2012)CrossRefGoogle Scholar
  22. 4.22.
    H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)CrossRefGoogle Scholar
  23. 4.23.
    T. Ando: Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74, 777–817 (2005)CrossRefGoogle Scholar
  24. 4.24.
    J. Kono, S. Roche: Magnetic properties. In: Carbon Nanotubes: Properties and Applications, ed. by M.J. OʼConnell (CRC, Boca Raton 2006), 119–151Google Scholar
  25. 4.25.
    J. Kono, R.J. Nicholas, S. Roche: High magnetic field phenomena in carbon nanotubes. In: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, Heidelberg 2008), 393–421Google Scholar
  26. 4.26.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)CrossRefGoogle Scholar
  27. 4.27.
    A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat (eds.): Understanding Carbon Nanotubes: From Basics to Application, Lecture Notes in Physics, Vol. 677 (Springer, Berlin, Heidelberg 2006)Google Scholar
  28. 4.28.
    F. Léonard: The Physics of Carbon Nanotube Devices (William Andrew, Norwich 2009)Google Scholar
  29. 4.29.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)CrossRefGoogle Scholar
  30. 4.30.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, 2204–2206 (1992)CrossRefGoogle Scholar
  31. 4.31.
    N. Hamada, S. Sawada, A. Oshiyama: New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992)CrossRefGoogle Scholar
  32. 4.32.
    H. Ajiki, T. Ando: Electronic states of carbon nanotubes, J. Phys. Soc. Jpn. 62, 1255–1266 (1993)CrossRefGoogle Scholar
  33. 4.33.
    J.W. Mintmire, B.I. Dunlap, C.T. White: Are fullerene tubules metallic?, Phys. Rev. Lett. 68, 631–634 (1992)CrossRefGoogle Scholar
  34. 4.34.
    P.R. Wallace: The band theory of graphite, Phys. Rev. 71(9), 622–634 (1947)CrossRefGoogle Scholar
  35. 4.35.
    B. Bourlon: Physique Interfeuillet Dans Les Nanotubes de Carbone Multifeuillets. Ph.D. Thesis (Université Paris VI, Paris 2005)Google Scholar
  36. 4.36.
    C. Kane, L. Balents, M.P.A. Fisher: Coulomb interactions and mesoscopic effects in carbon nanotubes, Phys. Rev. Lett. 79, 5086–5089 (1997)CrossRefGoogle Scholar
  37. 4.37.
    M.S. Dresselhaus, P.C. Eklund: Phonons in carbon nanotubes, Adv. Phys. 49(6), 705–814 (2000)CrossRefGoogle Scholar
  38. 4.38.
    R.A. Jishi, L. Venkataraman, M.S. Dresselhaus, G. Dresselhaus: Phonon modes in carbon nanotubules, Chem. Phys. Lett. 209(1/2), 77–82 (1993)CrossRefGoogle Scholar
  39. 4.39.
    P.C. Eklund, J.M. Holden, R.A. Jishi: Phonon modes in carbon nanotubules, Carbon 33(7), 959–972 (1995)CrossRefGoogle Scholar
  40. 4.40.
    R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M.S. Dresselhaus: Raman intensity of single-wall carbon nanotubes, Phys. Rev. B 57, 4145–4153 (1998)CrossRefGoogle Scholar
  41. 4.41.
    O. Dubay, G. Kresse: Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67, 035401 (2003)CrossRefGoogle Scholar
  42. 4.42.
    J. Yu, R.K. Kalia, P. Vashishta: Phonons in graphitic tubules: A tight-binding molecular dynamics study, J. Chem. Phys. 103, 6697 (1995)CrossRefGoogle Scholar
  43. 4.43.
    M. Menon, E. Richter, K.R. Subbaswamy: Structural and vibrational properties of fullerenes and nanotubes in a nonorthogonal tight-binding scheme, J. Chem. Phys. 104(15), 5875–5882 (1996)CrossRefGoogle Scholar
  44. 4.44.
    J. Kürti, G. Kresse, H. Kuzmany: First-principles calculations of the radial breathing mode of single-wall carbon nanotubes, Phys. Rev. B 58, R8869–R8872 (1998)CrossRefGoogle Scholar
  45. 4.45.
    D. Sánchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejón: Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B 59, 12678–12688 (1999)CrossRefGoogle Scholar
  46. 4.46.
    L.-H. Ye, B.-G. Liu, D.-S. Wang, R. Han: Ab initio phonon dispersions of single-wall carbon nanotubes, Phys. Rev. B 69, 235409 (2004)CrossRefGoogle Scholar
  47. 4.47.
    J. Hone: Phonons and thermal properties of carbon nanotubes. In: Carbon Nanotubes, Topics in Applied Physics, Vol. 80, ed. by M. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, Heidelberg 2001) pp. 273–286CrossRefGoogle Scholar
  48. 4.48.
    S. Rols, Z. Benes, E. Anglaret, J.L. Sauvajol, P. Papanek, J.E. Fischer, G. Coddens, H. Schober, A.J. Dianoux: Phonon density of states of single-wall carbon nanotubes, Phys. Rev. Lett. 85, 5222–5225 (2000)CrossRefGoogle Scholar
  49. 4.49.
    J. Hone: Carbon nanotubes: Thermal properties. In: Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. by J.A. Schwarz, C.I. Contescu, K. Putyera (Marcel Dekker, New York 2004) pp. 603–610Google Scholar
  50. 4.50.
    A. Mizel, L.X. Benedict, M.L. Cohen, S.G. Louie, A. Zettl, N.K. Budraa, W.P. Beyermann: Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes, Phys. Rev. B 60, 3264–3270 (1999)CrossRefGoogle Scholar
  51. 4.51.
    D. Kahn, J.P. Lu: Vibrational modes of carbon nanotubes and nanoropes, Phys. Rev. B 60, 6535–6540 (1999)CrossRefGoogle Scholar
  52. 4.52.
    P. Eklund, P.A.R. Blackmon, A.J. Hart, J. Kong, P. Bhabendra, A. Rao, A. Rinzler: International Assessment of Research and Development on Carbon Nanotubes: Manufacturing and Applications (World Technology Evaluation Center, Arlington 2007), available online at http://www.wtec.org/cnm/ Google Scholar
  53. 4.53.
    M. Kundrapu, J. Li, A. Shashurin, M. Keidar: A model of carbon nanotube synthesis in arc discharge plasmas, J. Phys. D 45, 315305 (2012)CrossRefGoogle Scholar
  54. 4.54.
    T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 243, 49–54 (1995)CrossRefGoogle Scholar
  55. 4.55.
    T.W. Ebbesen, P.M. Ajayan: Large-scale synthesis of carbon nanotubes, Nature 358(6383), 220–222 (1992)CrossRefGoogle Scholar
  56. 4.56.
    D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363(6430), 605–607 (1993)CrossRefGoogle Scholar
  57. 4.57.
    T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley: Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett. 243(1/2), 49–54 (1995)CrossRefGoogle Scholar
  58. 4.58.
    B.I. Yakobson, R.E. Smalley: Fullerene nanotubes: C1000000 and beyond, Am. Sci. 85(4), 324–337 (1997)Google Scholar
  59. 4.59.
    M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, R.E. Smalley: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, J. Vac. Sci. Technol. A 19(4), 1800–1805 (2001)CrossRefGoogle Scholar
  60. 4.60.
    Y. Liu, W.Z. Qian, Q. Zhang, G.Q. Ning, G.H. Luo, Y. Wang, D.Z. Wang, F. Wei: Synthesis of high-quality, double-walled carbon nanotubes in a fluidized bed reactor, Chem. Eng. Technol. 32(1), 73–79 (2009)CrossRefGoogle Scholar
  61. 4.61.
    Y. Wang, B. Li, P.S. Ho, Z. Yao, L. Shi: Effect of supporting layer on growth of carbon nanotubes by thermal chemical vapor deposition, Appl. Phys. Lett. 89, 183113 (2006)CrossRefGoogle Scholar
  62. 4.62.
    R. Philippe, A. Moranqais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, P. Serp: Catalytic production of carbon nanotubes by fluidized-bed CVD, Chem. Vap. Depos. 13(9), 447–457 (2007)CrossRefGoogle Scholar
  63. 4.63.
    M. Meyyappan: A review of plasma enhanced chemical vapour deposition of carbon nanotubes, J. Phys. D 42(21), 15 (2009)CrossRefGoogle Scholar
  64. 4.64.
    Y.Q. Xu, E. Flor, H. Schmidt, R.E. Smalley, R.H. Hauge: Effects of atomic hydrogen and active carbon species in 1 mm vertically aligned single-walled carbon nanotube growth, Appl. Phys. Lett. 89(12), 3 (2006)Google Scholar
  65. 4.65.
    C.L. Pint, G.B. Bozzolo, R. Hauge: Catalyst design for carbon nanotube growth using atomistic modeling, Nanotechnology 19, 405704 (2008)CrossRefGoogle Scholar
  66. 4.66.
    S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai: Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283(5401), 512–514 (1999)CrossRefGoogle Scholar
  67. 4.67.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306(5700), 1362–1364 (2004)CrossRefGoogle Scholar
  68. 4.68.
    Y. Murakami, S. Chiashi, Y. Miyauchi, M.H. Hu, M. Ogura, T. Okubo, S. Maruyama: Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy, Chem. Phys. Lett. 385(3/4), 298–303 (2004)CrossRefGoogle Scholar
  69. 4.69.
    S. Yasuda, D.N. Futaba, T. Yamada, J. Satou, A. Shibuya, H. Takai, K. Arakawa, M. Yumura, K. Hata: Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction, ACS Nano 3(12), 4164–4170 (2009)CrossRefGoogle Scholar
  70. 4.70.
    G.D. Nessim, M. Seita, K.P. OʼBrien, A.J. Hart, R.K. Bonaparte, R.R. Mitchell, C.V. Thompson: Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Lett. 9(10), 3398–3405 (2009)CrossRefGoogle Scholar
  71. 4.71.
    R.F. Wood, S. Pannala, J.C. Wells, A.A. Puretzky, D.B. Geohegan: Simple model of the interrelation between single- and multiwall carbon nanotube growth rates for the CVD process, Phys. Rev. B 75(23), 8 (2007)CrossRefGoogle Scholar
  72. 4.72.
    S.M. Kim, C.L. Pint, P.B. Amama, D.N. Zakharov, R.H. Hauge, B. Maruyama, E.A. Stach: Evolution in catalyst morphology leads to carbon nanotube growth termination, J. Phys. Chem. Lett. 1(6), 918–922 (2010)CrossRefGoogle Scholar
  73. 4.73.
    A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres: In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A 81, 223–240 (2005)CrossRefGoogle Scholar
  74. 4.74.
    T. Ogawa, T. Takagahara: Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system, Phys. Rev. B 43, 14325–14328 (1991)CrossRefGoogle Scholar
  75. 4.75.
    T. Ogawa, T. Takagahara: Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects, Phys. Rev. B 44, 8138–8156 (1991)CrossRefGoogle Scholar
  76. 4.76.
    M.J. OʼConnell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Hároz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes, Science 297, 593–596 (2002)CrossRefGoogle Scholar
  77. 4.77.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes, Science 298, 2361–2366 (2002)CrossRefGoogle Scholar
  78. 4.78.
    S. Lebedkin, F. Hennrich, T. Skipa, M.M. Kappes: Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method, J. Phys. Chem. B 107, 1949–1956 (2003)CrossRefGoogle Scholar
  79. 4.79.
    J. Lefebvre, Y. Homma, P. Finnie: Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes, Phys. Rev. Lett. 90, 217401 (2003)CrossRefGoogle Scholar
  80. 4.80.
    R.B. Weisman, S.M. Bachilo: Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot, Nano Lett. 3, 1235–1238 (2003)CrossRefGoogle Scholar
  81. 4.81.
    Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama: Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol, Chem. Phys. Lett. 387, 198–203 (2004)CrossRefGoogle Scholar
  82. 4.82.
    O.N. Torrens, D.E. Milkie, M. Zheng, J.M. Kikkawa: Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles, Nano Lett. 6, 2864–2867 (2006)CrossRefGoogle Scholar
  83. 4.83.
    P.H. Tan, A.G. Rozhin, T. Hasan, P. Hu, V. Scardaci, W.I. Milne, A.C. Ferrari: Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer, Phys. Rev. Lett. 99, 137402 (2007)CrossRefGoogle Scholar
  84. 4.84.
    O. Kiowski, K. Arnold, S. Lebedkin, F. Hennrich, M.M. Kappes: Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 99, 237402 (2007)CrossRefGoogle Scholar
  85. 4.85.
    O.N. Torrens, M. Zheng, J.M. Kikkawa: Energy of k-momentum dark excitons in carbon nanotubes by optical spectroscopy, Phys. Rev. Lett. 101(15), 157401 (2008)CrossRefGoogle Scholar
  86. 4.86.
    Y. Murakami, J. Kono: Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: Exploring the upper density limit of one-dimensional excitons, Phys. Rev. Lett. 102, 037401 (2009)CrossRefGoogle Scholar
  87. 4.87.
    Y. Murakami, J. Kono: Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton–exciton annihilation: Experiment and theory, Phys. Rev. B 80, 035432 (2009)CrossRefGoogle Scholar
  88. 4.88.
    J.A. Fagan, J.Y. Huh, J.R. Simpson, J.L. Blackburn, J.M. Holt, B.A. Larsen, A.R. Hight Walker: Separation of empty and water-filled single-wall carbon nanotubes, ACS Nano 5, 3943–3953 (2011)CrossRefGoogle Scholar
  89. 4.89.
    A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito: G-band resonant Raman study of 62 isolated single-wall carbon nanotubes, Phys. Rev. B 65, 155412 (2002)CrossRefGoogle Scholar
  90. 4.90.
    H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen: Chirality distribution and transition energies of carbon nanotubes, Phys. Rev. Lett. 93, 177401 (2004)CrossRefGoogle Scholar
  91. 4.91.
    S.K. Doorn, D.A. Heller, P.W. Barone, M.L. Usrey, M.S. Strano: Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution, Appl. Phys. A 78, 1147–1155 (2004)CrossRefGoogle Scholar
  92. 4.92.
    C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta: Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects, Phys. Rev. Lett. 93, 147406 (2004)CrossRefGoogle Scholar
  93. 4.93.
    J. Maultzsch, H. Telg, S. Reich, C. Thomsen: Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B 72, 205438 (2005)CrossRefGoogle Scholar
  94. 4.94.
    S.K. Doorn, M.J. OʼConnell, L. Zheng, Y.T. Zhu, S. Huang, J. Liu: Raman spectral imaging of a carbon nanotube intramolecular junction, Phys. Rev. Lett. 94, 016802 (2005)CrossRefGoogle Scholar
  95. 4.95.
    J. Jiang, R. Saito, A. Grüneis, S.G. Chou, G.G. Samsonidze, A. Jorio, G. Dresselhaus, M.S. Dresselhaus: Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes, Phys. Rev. B 71, 205420 (2005)CrossRefGoogle Scholar
  96. 4.96.
    J.C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G.S. Duesberg, S. Roth, J.-L. Sauvajol: Raman modes of index-identified freestanding single-walled carbon nanotubes, Phys. Rev. Lett. 95, 217401 (2005)CrossRefGoogle Scholar
  97. 4.97.
    A. Jorio, C. Fantini, M.A. Pimenta, R.B. Capaz, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, J. Jiang, N. Kobayashi, A. Grüneis, R. Saito: Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes, Phys. Rev. B 71, 075401 (2005)CrossRefGoogle Scholar
  98. 4.98.
    M. Paillet, T. Michel, J.C. Meyer, V.N. Popov, L. Henrard, S. Roth, J.-L. Sauvajol: Raman active phonons of identified semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 96, 257401 (2006)CrossRefGoogle Scholar
  99. 4.99.
    H. Son, A. Reina, G.G. Samsonidze, R. Saito, A. Jorio, M.S. Dresselhaus, J. Kong: Raman characterization of electronic transition energies of metallic single-wall carbon nanotubes, Phys. Rev. B 74, 073406 (2006)CrossRefGoogle Scholar
  100. 4.100.
    Y. Yin, A.N. Vamivakas, A.G. Walsh, S.B. Cronin, M.S. Ünlü, B.B. Goldberg, A.K. Swan: Optical determination of electron-phonon coupling in carbon nanotubes, Phys. Rev. Lett. 98, 037404 (2007)CrossRefGoogle Scholar
  101. 4.101.
    F. Wang, W. Liu, Y. Wu, M.Y. Sfeir, L. Huang, J. Hone, S. OʼBrien, L.E. Brus, T.F. Heinz, Y.R. Shen: Multiphonon Raman scattering from individual single-walled carbon nanotubes, Phys. Rev. Lett. 98, 047402 (2007)CrossRefGoogle Scholar
  102. 4.102.
    K.T. Nguyen, A. Gaur, M. Shim: Fano lineshape and phonon softening in single isolated metallic carbon nanotubes, Phys. Rev. Lett. 98, 145504 (2007)CrossRefGoogle Scholar
  103. 4.103.
    Y. Wu, J. Maultzsch, E. Knoesel, B. Chandra, M. Huang, M.Y. Sfeir, L.E. Brus, J. Hone, T.F. Heinz: Variable electron-phonon coupling in isolated metallic carbon nanotubes observed by Raman scattering, Phys. Rev. Lett. 99, 027402 (2007)CrossRefGoogle Scholar
  104. 4.104.
    H. Farhat, H. Son, G.G. Samsonidze, S. Reich, M.S. Dresselhaus, J. Kong: Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly, Phys. Rev. Lett. 99, 145506 (2007)CrossRefGoogle Scholar
  105. 4.105.
    J.C. Tsang, M. Freitag, V. Perebeinos, J. Liu, P. Avouris: Doping and phonon renormalization in carbon nanotubes, Nat. Nanotechnol. 2, 725–730 (2007)CrossRefGoogle Scholar
  106. 4.106.
    M. Oron-Carl, R. Krupke: Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes, Phys. Rev. Lett. 100, 127401 (2008)CrossRefGoogle Scholar
  107. 4.107.
    M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen: Longitudinal optical phonons in metallic and semiconducting carbon nanotubes, Phys. Rev. Lett. 102, 075501 (2009)CrossRefGoogle Scholar
  108. 4.108.
    T. Michel, M. Paillet, D. Nakabayashi, M. Picher, V. Jourdain, J.C. Meyer, A.A. Zahab, J.-L. Sauvajol: Indexing of individual single-walled carbon nanotubes from Raman spectroscopy, Phys. Rev. B 80, 245416 (2009)CrossRefGoogle Scholar
  109. 4.109.
    E.H. Hároz, W.D. Rice, B.Y. Lu, S. Ghosh, R.H. Hauge, R.B. Weisman, S.K. Doorn, J. Kono: Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence, ACS Nano 4, 1955–1962 (2010)CrossRefGoogle Scholar
  110. 4.110.
    J.G. Duque, H. Chen, A.K. Swan, A.P. Shreve, S. Kilina, S. Tretiak, X. Tu, M. Zheng, S.K. Doorn: Violation of the Condon approximation in semiconducting carbon nanotubes, ACS Nano 5, 5233–5241 (2011)CrossRefGoogle Scholar
  111. 4.111.
    G.N. Ostojic, S. Zaric, J. Kono, M.S. Strano, V.C. Moore, R.H. Hauge, R.E. Smalley: Interband recombination dynamics of resonantly-excited single-walled carbon nanotubes, Phys. Rev. Lett. 92, 117402 (2004)CrossRefGoogle Scholar
  112. 4.112.
    L. Huang, H.N. Pedrosa, T.D. Krauss: Ultrafast ground-state recovery of single-walled carbon nanotubes, Phys. Rev. Lett. 93, 017403 (2004)CrossRefGoogle Scholar
  113. 4.113.
    J. Kono, G.N. Ostojic, S. Zaric, M.S. Strano, V.C. Moore, J. Shaver, R.H. Hauge, R.E. Smalley: Ultrafast optical spectroscopy of micelle-suspended single-walled carbon nanotubes, Appl. Phys. A 78, 1093–1098 (2004)CrossRefGoogle Scholar
  114. 4.114.
    A. Hagen, G. Moos, V. Talalaev, T. Hertel: Electronic structure and dynamics of optically excited single-wall carbon nanotubes, Appl. Phys. A 78, 1137 (2004)CrossRefGoogle Scholar
  115. 4.115.
    Y.-Z. Ma, J. Stenger, J. Zimmerman, S.M. Bachilo, R.E. Smalley, R.B. Weisman, G.R. Fleming: Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy, J. Chem. Phys. 120, 3368 (2004)CrossRefGoogle Scholar
  116. 4.116.
    F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz: Time-resolved fluorescence in carbon nanotubes and its implication for radiative lifetimes, Phys. Rev. Lett. 92, 177402 (2004)CrossRefGoogle Scholar
  117. 4.117.
    R.J. Ellingson, C. Engtrakul, M. Jones, M. Samec, G. Rumbles, A.J. Nozik, M.J. Heben: Ultrafast photoresponse of metallic and semiconducting single-wall carbon nanotubes, Phys. Rev. B 71, 115444 (2005)CrossRefGoogle Scholar
  118. 4.118.
    S. Reich, M. Dworzak, A. Hoffmann, C. Thomsen, M.S. Strano: Excited-state carrier lifetime in single-walled carbon nanotubes, Phys. Rev. B 71, 033402 (2005)CrossRefGoogle Scholar
  119. 4.119.
    F. Wang, G. Dukovic, E. Knoesel, L.E. Brus, T.F. Heinz: Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes, Phys. Rev. B 70, 241403 (2004)CrossRefGoogle Scholar
  120. 4.120.
    A. Maeda, S. Matsumoto, H. Kishida, T. Takenobu, Y. Iwasa, M. Shiraishi, M. Ata, H. Okamoto: Large optical nonlinearity of semiconducting single-walled carbon nanotubes under resonant excitations, Phys. Rev. Lett. 94, 047404 (2005)CrossRefGoogle Scholar
  121. 4.121.
    C.-X. Sheng, Z.V. Vardeny, B. Dalton, R.H. Baughman: Exciton dynamics in single-walled nanotubes: Transient photoinduced dichroism and polarized emission, Phys. Rev. B 71, 125427 (2005)CrossRefGoogle Scholar
  122. 4.122.
    S.G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H.B. Ribeiro, A. Jorio, M.A. Pimenta, G.G. Samsonidze, A.P. Santos, M. Zheng, G.B. Onoa, E.D. Semke, G. Dresselhaus, M.S. Dresselhaus: Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy, Phys. Rev. Lett. 94, 127402 (2005)CrossRefGoogle Scholar
  123. 4.123.
    Y.-Z. Ma, L. Valkunas, S.L. Dexheimer, S.M. Bachilo, G.R. Fleming: Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation, Phys. Rev. Lett. 94, 157402 (2005)CrossRefGoogle Scholar
  124. 4.124.
    C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani, G. Cerullo: Intersubband exciton relaxation dynamics in single-walled carbon nanotubes, Phys. Rev. Lett. 94, 207401 (2005)CrossRefGoogle Scholar
  125. 4.125.
    J.S. Lauret, C. Voisin, S. Berger, G. Cassabois, C. Delalande, P. Roussignol, L. Goux-Capes, A. Filoramo: Environmental effects on the carrier dynamics in carbon nanotubes, Phys. Rev. B 72, 113413 (2005)CrossRefGoogle Scholar
  126. 4.126.
    A. Hagen, M. Steiner, M.B. Raschke, C. Lienau, T. Hertel, H. Qian, A.J. Meixner, A. Hartschuh: Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes, Phys. Rev. Lett. 95, 197401 (2005)CrossRefGoogle Scholar
  127. 4.127.
    S.G. Chou, M.F. DeCamp, J. Jiang, G.G. Samsonidze, E.B. Barros, F. Plentz, A. Jorio, M. Zheng, G.B. Onoa, E.D. Semke, A. Tokmakoff, R. Saito, G. Dresselhaus, M.S. Dresselhaus: Phonon-assisted exciton relaxation dynamics for a (6,5)-enriched DNA-wrapped single-walled carbon nanotube sample, Phys. Rev. B 72, 195415 (2005)CrossRefGoogle Scholar
  128. 4.128.
    G.N. Ostojic, S. Zaric, J. Kono, V.C. Moore, R.H. Hauge, R.E. Smalley: Stability of high-density one-dimensional excitons in carbon nanotubes under high laser excitation, Phys. Rev. Lett. 94, 097401 (2005)CrossRefGoogle Scholar
  129. 4.129.
    A. Gambetta, C. Manzoni, E. Menna, M. Meneghetti, G. Cerullo, G. Lanzani, S. Tretiak, A. Piryatinski, A. Saxena, R.L. Martin, A.R. Bishop: Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes, Nat. Phys. 2, 515–520 (2006)CrossRefGoogle Scholar
  130. 4.130.
    Y.-S. Lim, K.-J. Yee, J.-H. Kim, J. Shaver, E.H. Hároz, J. Kono, S.K. Doorn, R.H. Hauge, R.E. Smalley: Coherent lattice vibrations in carbon nanotubes, Nano Lett. 6, 2696–2700 (2006)CrossRefGoogle Scholar
  131. 4.131.
    Y. Hashimoto, Y. Murakami, S. Maruyama, J. Kono: Anisotropic decay dynamics of photoexcited aligned carbon nanotube bundles, Phys. Rev. B 75, 245408 (2007)CrossRefGoogle Scholar
  132. 4.132.
    D. Song, F. Wang, G. Dukovic, M. Zheng, E.D. Semke, L.E. Brus, T.F. Heinz: Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes, Phys. Rev. Lett. 100, 225503 (2008)CrossRefGoogle Scholar
  133. 4.133.
    K. Kang, T. Ozel, D.G. Cahill, M. Shim: Optical phonon lifetimes in single-walled carbon nanotubes by time-resolved Raman scattering, Nano Lett. 8, 4642–4647 (2008)CrossRefGoogle Scholar
  134. 4.134.
    J.-H. Kim, K.-J. Han, N.-J. Kim, K.-J. Yee, Y.-S. Lim, G.D. Sanders, C.J. Stanton, L.G. Booshehri, E.H. Hároz, J. Kono: Chirality-selective excitations of coherent phonons in carbon nanotubes by femtosecond optical pulses, Phys. Rev. Lett. 102, 037402 (2009)CrossRefGoogle Scholar
  135. 4.135.
    L. Lüer, C. Gadermaier, J. Crochet, T. Hertel, D. Brida, G. Lanzani: Coherent phonon dynamics in semiconducting carbon nanotubes: A quantitative study of electron-phonon coupling, Phys. Rev. Lett. 102, 127401 (2009)CrossRefGoogle Scholar
  136. 4.136.
    I. Chatzakis, H. Yan, D. Song, S. Berciaud, T.F. Heinz: Temperature dependence of the anharmonic decay of optical phonons in carbon nanotubes and graphite, Phys. Rev. B 83, 205411 (2011)CrossRefGoogle Scholar
  137. 4.137.
    J.-H. Kim, K.-J. Yee, Y.-S. Lim, L.G. Booshehri, E.H. Hároz, J. Kono: Optical phonon dephasing in single-walled carbon nanotubes probed via impulsive stimulated Raman scattering, Phys. Rev. B 86, 161415(R) (2011)CrossRefGoogle Scholar
  138. 4.138.
    D.T. Nguyen, C. Voisin, P. Roussignol, C. Roquelet, J.S. Lauret, G. Cassabois: Elastic exciton–exciton scattering in photoexcited carbon nanotubes, Phys. Rev. Lett. 107, 127401 (2011)CrossRefGoogle Scholar
  139. 4.139.
    S.M. Santos, B. Yuma, S. Berciaud, J. Shaver, M. Gallart, P. Gilliot, L. Cognet, B. Lounis: All-optical trion generation in single-walled carbon nanotubes, Phys. Rev. Lett. 107, 187401 (2011)CrossRefGoogle Scholar
  140. 4.140.
    J.J. Crochet, S. Hoseinkhani, L. Lüer, T. Hertel, S.K. Doorn, G. Lanzani: Free-carrier generation in aggregates of single-wall carbon nanotubes by photoexcitation in the ultraviolet regime, Phys. Rev. Lett. 107, 257402 (2011)CrossRefGoogle Scholar
  141. 4.141.
    M. Freitag, Y. Martin, J.A. Misewich, R. Martel, P. Avouris: Photoconductivity of single carbon nanotubes, Nano Lett. 3, 1067–1071 (2003)CrossRefGoogle Scholar
  142. 4.142.
    A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny: High-resolution near-field raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90, 095503 (2003)CrossRefGoogle Scholar
  143. 4.143.
    J.A. Misewich, R. Martel, P. Avouris, J.C. Tsang, S. Heinze, J. Tersoff: Electrically induced optical emission from a carbon nanotube FET, Science 300, 783–786 (2003)CrossRefGoogle Scholar
  144. 4.144.
    A. Hartschuh, H.N. Pedrosa, L. Novotny, T.D. Krauss: Simultaneous fluorescence and Raman scattering from single carbon nanotubes, Science 301, 1354–1356 (2003)CrossRefGoogle Scholar
  145. 4.145.
    J. Lefebvre, J.M. Fraser, P. Finnie, Y. Homma: Photoluminescence from an individual single-walled carbon nanotube, Phys. Rev. B 69, 075403 (2004)CrossRefGoogle Scholar
  146. 4.146.
    H. Htoon, M.J. OʼConnell, P.J. Cox, S.K. Doorn, V.I. Klimov: Low temperature emission spectra of individual single-walled carbon nanotubes: Multiplicity of subspecies within single-species nanotube ensembles, Phys. Rev. Lett. 93, 027401 (2004)CrossRefGoogle Scholar
  147. 4.147.
    K. Matsuda, Y. Kanemitsu, K. Irie, T. Saiki, T. Someya, Y. Miyauchi, S. Maruyama: Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature, Appl. Phys. Lett. 86, 123116 (2005)CrossRefGoogle Scholar
  148. 4.148.
    K. Balasubramanian, M. Burghard, K. Kern, M. Scolari, A. Mews: Photocurrent imaging of charge transport barriers in carbon nanotube devices, Nano Lett. 5, 507–510 (2005)CrossRefGoogle Scholar
  149. 4.149.
    H. Htoon, M.J. OʼConnell, S.K. Doorn, V.I. Klimov: Single carbon nanotubes probed by photoluminescence excitation spectroscopy: The role of phonon-assisted transitions, Phys. Rev. Lett. 94, 127403 (2005)CrossRefGoogle Scholar
  150. 4.150.
    J.U. Lee: Photovoltaic effect in ideal carbon nanotube diodes, Appl. Phys. Lett. 87, 073101 (2005)CrossRefGoogle Scholar
  151. 4.151.
    J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, P. Avouris: Bright infrared emission from electrically induced excitons in carbon nanotubes, Science 310, 1171–1174 (2005)CrossRefGoogle Scholar
  152. 4.152.
    J.U. Lee, P.J. Codella, M. Pietrzykowski: Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes, Appl. Phys. Lett. 90, 053103 (2007)CrossRefGoogle Scholar
  153. 4.153.
    L. Cognet, D.A. Tsyboulski, J.-D.R. Rocha, C.D. Doyle, J.M. Tour, R.B. Weisman: Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions, Science 316, 1465–1468 (2007)CrossRefGoogle Scholar
  154. 4.154.
    A. Högele, C. Galland, M. Winger, A. Imamoğlu: Photon antibunching in the photoluminescence spectra of a single carbon nanotube, Phys. Rev. Lett. 100, 217401 (2008)CrossRefGoogle Scholar
  155. 4.155.
    C. Galland, A. Högele, H.E. Türeci, A. Imamoğlu: Non-Markovian decoherence of localized nanotube excitons by acoustic phonons, Phys. Rev. Lett. 101, 067402 (2008)CrossRefGoogle Scholar
  156. 4.156.
    A. Srivastava, H. Htoon, V.I. Klimov, J. Kono: Direct observation of dark excitons in individual carbon nanotubes: Inhomogeneity in the exchange splitting, Phys. Rev. Lett. 101, 087402 (2008)CrossRefGoogle Scholar
  157. 4.157.
    R. Matsunaga, K. Matsuda, Y. Kanemitsu: Evidence for dark excitons in a single carbon nanotube due to the Aharonov–Bohm effect, Phys. Rev. Lett. 101, 147404 (2008)CrossRefGoogle Scholar
  158. 4.158.
    K. Matsuda, T. Inoue, Y. Murakami, S. Maruyama, Y. Kanemitsu: Exciton dephasing and multiexciton recombinations in a single carbon nanotube, Phys. Rev. B 77, 033406 (2008)CrossRefGoogle Scholar
  159. 4.159.
    N.M. Gabor, Z. Zhong, K. Bosnick, J. Park, P.L. McEuen: Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes, Science 325, 1367–1371 (2009)CrossRefGoogle Scholar
  160. 4.160.
    M. Steiner, M. Freitag, V. Perebeinos, A. Naumov, J.P. Small, A.A. Bol, P. Avouris: Gate-variable light absorption and emission in a semiconducting carbon nanotube, Nano Lett. 9, 3477–3481 (2009)CrossRefGoogle Scholar
  161. 4.161.
    R. Matsunaga, Y. Miyauchi, K. Matsuda, Y. Kanemitsu: Symmetry-induced nonequilibrium distributions of bright and dark exciton states in single carbon nanotubes, Phys. Rev. B 80, 115436 (2009)CrossRefGoogle Scholar
  162. 4.162.
    M. Freitag, M. Steiner, A. Naumov, J.P. Small, A.A. Bol, V. Perebeinos, P. Avouris: Carbon nanotube photo- and electroluminescence in longitudinal electric fields, ACS Nano 3, 3744–3748 (2009)CrossRefGoogle Scholar
  163. 4.163.
    S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, Y.K. Kato: Exciton diffusion in air-suspended single-walled carbon nanotubes, Phys. Rev. Lett. 104, 247402 (2010)CrossRefGoogle Scholar
  164. 4.164.
    S. Zaric, G.N. Ostojic, J. Kono, J. Shaver, V.C. Moore, M.S. Strano, R.H. Hauge, R.E. Smalley, X. Wei: Optical signatures of the Aharonov–Bohm phase in single-walled carbon nanotubes, Science 304, 1129–1131 (2004)CrossRefGoogle Scholar
  165. 4.165.
    S. Zaric, G.N. Ostojic, J. Shaver, J. Kono, O. Portugall, P.H. Frings, G.L.J.A. Rikken, M. Furis, S.A. Crooker, X. Wei, V.C. Moore, R.H. Hauge, R.E. Smalley: Excitons in carbon nanotubes with broken time-reversal symmetry, Phys. Rev. Lett. 96, 016406 (2006)CrossRefGoogle Scholar
  166. 4.166.
    J. Shaver, J. Kono, O. Portugall, V. Krstic, G.L.J.A. Rikken, Y. Miyauchi, S. Maruyama, V. Perebeinos: Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking, Nano Lett. 7, 1851–1855 (2007)CrossRefGoogle Scholar
  167. 4.167.
    I.B. Mortimer, R.J. Nicholas: Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes, Phys. Rev. Lett. 98, 027404 (2007)CrossRefGoogle Scholar
  168. 4.168.
    J. Shaver, J. Kono: Temperature dependent magneto-photoluminescence spectroscopy of carbon nanotubes: Evidence for dark excitons, Laser Photonics Rev. 1, 260–274 (2007)CrossRefGoogle Scholar
  169. 4.169.
    J. Shaver, S.A. Crooker, J.A. Fagan, E.K. Hobbie, N. Ubrig, O. Portugall, V. Perebeinos, P. Avouris, J. Kono: Magneto-optical spectroscopy of highly-aligned carbon nanotubes: Identifying the role of threading magnetic flux, Phys. Rev. B 78, 081402 (2008)CrossRefGoogle Scholar
  170. 4.170.
    J. Shaver, A.N.G. Parra-Vasquez, S. Hansel, O. Portugall, C.H. Mielke, M. von Ortenberg, R.H. Hauge, M. Pasquali, J. Kono: Alignment dynamics of carbon nanotubes in pulsed ultrahigh magnetic fields, ACS Nano 3, 131 (2009)CrossRefGoogle Scholar
  171. 4.171.
    R.S. Knox: Theory of Excitons, Solid State Physics, Vol. 5 (Academic, New York 1963)Google Scholar
  172. 4.172.
    R. Loudon: One-dimensional hydrogen atom, Am. J. Phys. 27, 649 (1959)Google Scholar
  173. 4.173.
    R.J. Elliot, R. Loudon: Theory of the absorption edge in semiconductors in a high magnetic field, J. Phys. Chem. Solids 15, 196–207 (1960)CrossRefGoogle Scholar
  174. 4.174.
    F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz: The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005)CrossRefGoogle Scholar
  175. 4.175.
    J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M.S. Strano, C. Thomsen, C. Lienau: Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Phys. Rev. B 72, 241402 (2005)CrossRefGoogle Scholar
  176. 4.176.
    S. Uryu, T. Ando: Exciton absorption of perpendicularly polarized light in carbon nanotubes, Phys. Rev. B 74, 155411 (2006)CrossRefGoogle Scholar
  177. 4.177.
    S. Uryu, T. Ando: Cross-polarized exciton absorption in carbon nanotubes with Aharonov–Bohm flux, Phys. Rev. B 76, 115420 (2007)CrossRefGoogle Scholar
  178. 4.178.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: Optical properties of single-wall carbon nanotubes, Synth. Met. 103, 2555–2558 (1999)CrossRefGoogle Scholar
  179. 4.179.
    S. Berciaud, L. Cognet, P. Poulin, R.B. Weisman, B. Lounis: Absorption spectroscopy of individual single-walled carbon nanotubes, Nano Lett. 7, 1203–1207 (2007)CrossRefGoogle Scholar
  180. 4.180.
    F. Wang, D.J. Cho, B. Kessler, J. Deslippe, P.J. Schuck, S.G. Louie, A. Zettl, T.F. Heinz, Y.R. Shen: Observation of excitons in one-dimensional metallic single-walled carbon nanotubes, Phys. Rev. Lett. 99, 227401 (2007)CrossRefGoogle Scholar
  181. 4.181.
    A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus: Diameter-selective Raman scattering from virbrational modes in carbon nanotubes, Science 275, 187–191 (1997)CrossRefGoogle Scholar
  182. 4.182.
    A. Jorio, M.S. Dresselhaus, R. Saito, G.F. Dresselhaus: Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, Weinheim 2011)CrossRefGoogle Scholar
  183. 4.183.
    M.J. OʼConnell, S. Sivaram, S.K. Doorn: Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersed HiPco nanotubes, Phys. Rev. B 69, 235415 (2004)CrossRefGoogle Scholar
  184. 4.184.
    A. Jorio, A.P. Santos, H.B. Ribeiro, C. Fantini, M. Souza, J.P.M. Viera, C.A. Furtado, J. Jiang, R. Saito, L. Balzano, D.E. Resasco, M.A. Pimenta: Quantifying carbon-nanotube species with resonance Raman scattering, Phys. Rev. B 72, 075207 (2005)CrossRefGoogle Scholar
  185. 4.185.
    H. Telg, J. Maultzsch, C. Thomsen: Raman Intensities of the Radial-Breathing Mode in Carbon Nanotubes: The Exciton-Phonon Coupling as a Function of (n1, n2), J. Nanophoton. 4, 041660 (2012)CrossRefGoogle Scholar
  186. 4.186.
    E.H. Hároz, J.G. Duque, X. Tu, M. Zheng, A.R. Hight Walker, R.H. Hauge, S.K. Doorn, J. Kono: Fundamental optical processes in armchair carbon nanotubes, Nanoscale 5(4), 1411–1411 (2012)CrossRefGoogle Scholar
  187. 4.187.
    M.A. Pimenta, A. Marucci, S.A. Empedocles, M.G. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus: Raman modes of metallic carbon nanotubes, Phys. Rev. B 58(24), R16016–R16019 (1998)CrossRefGoogle Scholar
  188. 4.188.
    S.D.M. Brown, A. Jorio, M.S. Dresselhaus, G. Dresselhaus: Observations of the D-band feature in the Raman spectra of carbon nanotubes, Phys. Rev. B 64(7), 073403 (2001)CrossRefGoogle Scholar
  189. 4.189.
    S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri: Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects, Phys. Rev. B 75(3), 035427 (2007)CrossRefGoogle Scholar
  190. 4.190.
    E.H. Hároz, J.G. Duque, W.D. Rice, C.G. Densmore, J. Kono, S.K. Doorn: Resonant Raman spectroscopy of armchair carbon nanotubes: Absence of broad G feature, Phys. Rev. B 84(12), 121403 (2011)CrossRefGoogle Scholar
  191. 4.191.
    A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley: Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 388, 257 (1997)CrossRefGoogle Scholar
  192. 4.192.
    S.B. Cronin, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.S. Dresselhaus, M. Tinkham: Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain, Phys. Rev. B 72, 035425 (2005)CrossRefGoogle Scholar
  193. 4.193.
    S. Berciaud, C. Voisin, H. Yan, B. Chandra, R. Caldwell, Y. Shan, L.E. Brus, J. Hone, T.F. Heinz: Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study, Phys. Rev. B 81, 041414 (2010)CrossRefGoogle Scholar
  194. 4.194.
    A.G. Souza Filho, A. Jorio, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Ünlü, B.B. Goldberg, R. Saito, J.H. Hafner, C.M. Lieber, M.A. Pimenta: Probing the electronic trigonal warping effect in inidividual single-wall carbon nanotubes using phonon spectra, Chem. Phys. Lett. 354, 62–68 (2002)CrossRefGoogle Scholar
  195. 4.195.
    M.Y. Sfeir, F. Wang, L. Huang, C.C. Chuang, J. Hone, S.P. OʼBrien, T.F. Heinz, L.E. Brus: Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering, Science 306, 1540 (2004)CrossRefGoogle Scholar
  196. 4.196.
    M.Y. Sfeir, T. Beetz, F. Wang, L. Huang, X.M.H. Huang, M. Huang, J. Hone, S. OʼBrien, J.A. Misewich, T.F. Heinz, L. Wu, Y. Zhu, L.E. Brus: Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure, Science 312, 554–556 (2006)CrossRefGoogle Scholar
  197. 4.197.
    K. Liu, J. Deslippe, F. Xiao, R.B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S.G. Louie, E. Wang, F. Wang: An atlas of carbon nanotube optical transitions, Nat. Nanotechnol. 7, 325–329 (2012)CrossRefGoogle Scholar
  198. 4.198.
    D.Y. Joh, L.H. Herman, S.-Y. Ju, J. Kinder, M.A. Segal, J.N. Johnson, G.K.L. Chan, J. Park: On-chip Rayleigh imaging and spectroscopy of carbon nanotubes, Nano Lett. 11, 1–7 (2011)CrossRefGoogle Scholar
  199. 4.199.
    T. Hertel, G. Moos: Electron–phonon interaction in single-wall carbon nanotubes: A time-domain study, Phys. Rev. Lett. 84, 5002 (2000)CrossRefGoogle Scholar
  200. 4.200.
    J.-H. Kim, J. Park, B.Y. Lee, D. Lee, K.-J. Yee, Y.-S. Lim, L.G. Booshehri, E.H. Hároz, J. Kono, S.-H. Baik: Polarization anisotropy of transient carrier and phonon dynamics in carbon nanotubes, J. Appl. Phys. 105, 103506 (2009)CrossRefGoogle Scholar
  201. 4.201.
    J. Wang, M.W. Graham, Y.-Z. Ma, G.R. Fleming, R.A. Kaindl: Ultrafast spectroscopy of midinfrared internal exciton transitions in seperated single-walled carbon nanotubes, Phys. Rev. Lett. 104, 177401 (2010)CrossRefGoogle Scholar
  202. 4.202.
    B. Gao, G.B. Hartland, L. Huang: Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes, ACS Nano 6, 5083 (2012)CrossRefGoogle Scholar
  203. 4.203.
    J.S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, L. Capes: Ultrafast carrier dynamics in single-wall carbon nanotubes, Phys. Rev. Lett. 90, 057404 (2003)CrossRefGoogle Scholar
  204. 4.204.
    K. Kato, K. Ishioka, M. Kitajima, J. Tang, R. Saito, H. Petek: Coherent phonon anisotropy in aligned single-walled carbon nanotubes, Nano Lett. 8, 3102–3108 (2008)CrossRefGoogle Scholar
  205. 4.205.
    L.G. Booshehri, C.L. Pint, G.D. Sanders, L. Ren, C. Sun, E.H. Hároz, J.-H. Kim, K.-J. Yee, Y.-S. Lim, R.H. Hauge, C.J. Stanton, J. Kono: Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes, Phys. Rev. B 83, 195411 (2011)CrossRefGoogle Scholar
  206. 4.206.
    Y.-S. Lim, K.-J. Yee, J.-H. Kim, E.H. Hároz, J. Shaver, J. Kono, S.K. Doorn, R.H. Hauge, R.E. Smalley: Chirality assignment of micelle-suspended single-walled carbon nanotubes using coherent phonon oscillations, J. Korean Phys. Soc. 51, 306 (2007)CrossRefGoogle Scholar
  207. 4.207.
    A.M. Weiner, J.P. Heritage, E.M. Kirschner: High-resolution femtosecond pulse shaping, J. Opt. Soc. Am. B 5(8), 1563 (1988)CrossRefGoogle Scholar
  208. 4.208.
    R.J. Elliot, R. Loudon: Theory of fine structure on the absorption edge in semiconductors, J. Phys. Chem. Solids 8, 382–388 (1959)CrossRefGoogle Scholar
  209. 4.209.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio: Exciton photophysics of carbon nanotubes, Annu. Rev. Phys. Chem. 58, 719–747 (2007)CrossRefGoogle Scholar
  210. 4.210.
    T. Ando: Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066–1073 (1997)CrossRefGoogle Scholar
  211. 4.211.
    T. Ando: Excitons in carbon nanotubes revisited: Dependence on diameter, Aharonov–Bohm flux, and strain, J. Phys. Soc. Jpn. 73, 3351–3363 (2004)CrossRefGoogle Scholar
  212. 4.212.
    T.G. Pedersen: Variational approach to excitons in carbon nanotubes, Phys. Rev. B 67, 073401 (2003)CrossRefGoogle Scholar
  213. 4.213.
    C.L. Kane, E.J. Mele: Ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett. 90, 207401 (2003)CrossRefGoogle Scholar
  214. 4.214.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie: Excitonic effects and optical spectra of single-walled carbon nanotubes, Phys. Rev. Lett. 92, 077402 (2004)CrossRefGoogle Scholar
  215. 4.215.
    E. Chang, G. Bussi, A. Ruini, E. Molinari: Excitons in carbon nanotubes: An ab initio symmetry-based approach, Phys. Rev. Lett. 92, 196401 (2004)CrossRefGoogle Scholar
  216. 4.216.
    T.G. Pederson: Exciton effects in carbon nanotubes, Carbon 42, 1007 (2004)CrossRefGoogle Scholar
  217. 4.217.
    V. Perebeinos, J. Tersoff, P. Avouris: Scaling of excitons in carbon nanotubes, Phys. Rev. Lett. 92, 257402 (2004)CrossRefGoogle Scholar
  218. 4.218.
    C.L. Kane, E.J. Mele: Electron interactions and scaling relations for optical excitations in carbon nanotubes, Phys. Rev. Lett. 93, 197402 (2004)CrossRefGoogle Scholar
  219. 4.219.
    H. Zhao, S. Mazumdar: Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 93, 157402 (2004)CrossRefGoogle Scholar
  220. 4.220.
    E. Chang, G. Bussi, A. Ruini, E. Molinari: First-principles approach for the calculation of optical properties of one-dimensional systems with helical symmetry: The case of carbon nanotubes, Phys. Rev. B 72, 195423 (2005)CrossRefGoogle Scholar
  221. 4.221.
    V. Perebeinos, J. Tersoff, P. Avouris: Radiative lifetime of excitons in carbon nanotubes, Nano Lett. 5, 2495–2499 (2005)CrossRefGoogle Scholar
  222. 4.222.
    C.D. Spataru, S. Ismail-Beigi, R.B. Capaz, S.G. Louie: Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes, Phys. Rev. Lett. 95, 247402 (2005)CrossRefGoogle Scholar
  223. 4.223.
    T. Ando: Effects of valley mixing and exchange on excitons in carbon nanotubes with Aharonov–Bohm flux, J. Phys. Soc. Jpn. 75, 024707 (2006)CrossRefGoogle Scholar
  224. 4.224.
    J. Deslippe, C.D. Spataru, D. Prendergast, S.G. Louie: Bound excitons in metallic single-walled carbon nanotubes, Nano Lett. 7, 1626–1630 (2007)CrossRefGoogle Scholar
  225. 4.225.
    S. Kilina, S. Tretiak, S.K. Doorn, Z. Luo, F. Papadimitrakopoulos, A. Piryatinski, A. Saxena, A.R. Bishop: Cross-polarized excitons in carbon nanotubes, Proc. Natl. Acad. Sci. USA 105, 6797–6802 (2008)CrossRefGoogle Scholar
  226. 4.226.
    S. Uryu, T. Ando: Excitons in metallic carbon nanotubes with Aharonov–Bohm flux, Phys. Rev. B 77, 205407 (2008)CrossRefGoogle Scholar
  227. 4.227.
    P.T. Araujo, A. Jorio, M.S. Dresselhaus, K. Sato, R. Saito: Diameter dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes, Phys. Rev. Lett. 103, 146802 (2009)CrossRefGoogle Scholar
  228. 4.228.
    T. Ando: Environment effects on excitons in semiconducting carbon nanotubes, J. Phys. Soc. Jpn. 79, 024706 (2010)CrossRefGoogle Scholar
  229. 4.229.
    A.R.T. Nugraha, R. Saito, K. Sato, P.T. Araujo, A. Jorio, M.S. Dresselhaus: Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes, Appl. Phys. Lett. 97, 091905 (2010)CrossRefGoogle Scholar
  230. 4.230.
    J. Maultzsch, H. Telg, S. Reich, C. Thomsen: Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B 72, 205438 (2005)CrossRefGoogle Scholar
  231. 4.231.
    E. Chang, D. Prezzi, A. Ruini, E. Molinari: Dark excitons in carbon nanotubes, Phys. Rev. B (2012), in pressGoogle Scholar
  232. 4.232.
    G. Dukovic, F. Wang, D. Song, M.Y. Sfeir, T.F. Heinz, L.E. Brus: Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett. 5, 2314–2318 (2005)CrossRefGoogle Scholar
  233. 4.233.
    F. Wang, D.J. Cho, B. Kessler, J. Deslippe, P.J. Schuck, S.G. Louie, A. Zettl, T.F. Heinz, Y.R. Shen: Observation of excitons in one-dimensional metallic single-walled carbon nanotubes, Phys. Rev. Lett. 99, 227401 (2007)CrossRefGoogle Scholar
  234. 4.234.
    E.H. Hároz, J.G. Duque, B.Y. Lu, P. Nikolaev, S. Arepalli, R.H. Hauge, S.K. Doorn, J. Kono: Unique origin of colors of armchair carbon nanotubes, J. Am. Chem. Soc. 134, 4461–4464 (2011)CrossRefGoogle Scholar
  235. 4.235.
    A.B. Kaiser: Electronic transport properties of conducting polymers and carbon nanotubes, Rep. Prog. Phys. 64(1), 1 (2000)CrossRefGoogle Scholar
  236. 4.236.
    J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley: Metallic resistivity in crystalline ropes of single-wall carbon nanotubes, Phys. Rev. B 55, R4921–R4924 (1997)CrossRefGoogle Scholar
  237. 4.237.
    G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G. Duesberg, S. Roth: Magnetoresistance of an entangled single-wall carbon-nanotube network, Phys. Rev. B 58, 16064–16069 (1998)CrossRefGoogle Scholar
  238. 4.238.
    Y. Yosida, I. Oguro: Variable range hopping conduction in bulk samples composed of single-walled carbon nanotubes, J. Appl. Phys. 86(2), 999–1003 (1999)CrossRefGoogle Scholar
  239. 4.239.
    M.S. Fuhrer, M.L. Cohen, A. Zettl, V. Crespi: Localization in single-walled carbon nanotubes, Solid State Commun. 109(2), 105–109 (1998)CrossRefGoogle Scholar
  240. 4.240.
    P. Pipinys, A. Kiveris: Phonon-assisted tunnelling in electrical conductivity of individual carbon nanotubes and networks ones, Physica B 403(19/20), 3730–3733 (2008)CrossRefGoogle Scholar
  241. 4.241.
    A.B. Kaiser, K.J. Challis, G.C. McIntosh, G.T. Kim, H.Y. Yu, J.G. Park, S.H. Jhang, Y.W. Park: Frequency and field dependent conductivity of carbon nanotube networks, Curr. Appl. Phys. 2(2), 163–166 (2002)CrossRefGoogle Scholar
  242. 4.242.
    H. Xu, S. Zhang, S.M. Anlage, L. Hu, G. Grüner: Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density, Phys. Rev. B 77, 075418 (2008)CrossRefGoogle Scholar
  243. 4.243.
    M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley: Single-electron transport in ropes of carbon nanotubes, Science 275, 1922–1925 (1997)CrossRefGoogle Scholar
  244. 4.244.
    W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665 (2001)CrossRefGoogle Scholar
  245. 4.245.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai: Ballistic carbon nanotube field-effect transistors, Nature 424, 654 (2003)CrossRefGoogle Scholar
  246. 4.246.
    D.H. Cobden, M. Bockrath, P.L. McEuen, A.G. Rinzler, R.E. Smalley: Spin splitting and even-odd effects in carbon nanotubes, Phys. Rev. Lett. 81, 681–684 (1998)CrossRefGoogle Scholar
  247. 4.247.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474–477 (1997)CrossRefGoogle Scholar
  248. 4.248.
    S.J. Tans, A.R.M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)CrossRefGoogle Scholar
  249. 4.249.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73(17), 2447–2449 (1998)CrossRefGoogle Scholar
  250. 4.250.
    S.J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M.A. Alam, S.V. Rotkin, J.A. Rogers: High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes, Nat. Nanotechnol. 2, 230–236 (2007)CrossRefGoogle Scholar
  251. 4.251.
    J.U. Lee, P.P. Gipp, C.M. Heller: Carbon nanotube p-n junction diodes, Appl. Phys. Lett. 85, 145 (2004)CrossRefGoogle Scholar
  252. 4.252.
    E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai: Negative differential conductance and hot phonons in suspended nanotube molecular wires, Phys. Rev. Lett. 95, 155505 (2005)CrossRefGoogle Scholar
  253. 4.253.
    M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen: Luttinger liquid behavior in carbon nanotubes, Nature 397, 598 (1999)CrossRefGoogle Scholar
  254. 4.254.
    H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001)CrossRefGoogle Scholar
  255. 4.255.
    S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris: Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 89, 106801 (2002)CrossRefGoogle Scholar
  256. 4.256.
    S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1995)CrossRefGoogle Scholar
  257. 4.257.
    H. Mathieu: Physique des Semiconducteurs et des Composants électroniques (Dunod, Paris 2001)Google Scholar
  258. 4.258.
    M. Krüger, M.R. Buitelaar, T. Nussbaumer, C. Schönenberger, L. Forró: Electrochemical carbon nanotube field-effect transistor, Appl. Phys. Lett. 78(9), 1291–1293 (2001)CrossRefGoogle Scholar
  259. 4.259.
    W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai: Hysteresis caused by water molecules in carbon nanotube field-effect transistors, Nano Lett. 3(2), 193–198 (2003)CrossRefGoogle Scholar
  260. 4.260.
    J. Guo, S. Goasguen, M. Lundstrom, S. Datta: Metal–insulator–semiconductor electrostatics of carbon nanotubes, Appl. Phys. Lett. 81(8), 1486–1488 (2002)CrossRefGoogle Scholar
  261. 4.261.
    J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)CrossRefGoogle Scholar
  262. 4.262.
    R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, P. Avouris: Ambipolar electrical transport in semiconducting single-wall carbon nanotubes, Phys. Rev. Lett. 87, 256805 (2001)CrossRefGoogle Scholar
  263. 4.263.
    J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu: Quantum interference and ballistic transmission in nanotube electron waveguides, Phys. Rev. Lett. 87, 106801 (2001)CrossRefGoogle Scholar
  264. 4.264.
    F. Léonard, J. Tersoff: Role of Fermi-level pinning in nanotube Schottky diodes, Phys. Rev. Lett. 84(20), 4693–4696 (2000)CrossRefGoogle Scholar
  265. 4.265.
    A. Javey, P. Qi, Q. Wang, H. Dai: Ten- to 50-nm-long quasi-ballistic carbon nanotubes devices obtained without complex lithography, Proc. Natl. Acad. Sci. USA 101, 13408–13410 (2004)CrossRefGoogle Scholar
  266. 4.266.
    R. Egger, A.O. Gogolin: Effective low-energy theory for correlated carbon nanotubes, Phys. Rev. Lett. 79, 5082 (1997)CrossRefGoogle Scholar
  267. 4.267.
    Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273 (1999)CrossRefGoogle Scholar
  268. 4.268.
    J. Cao, Q. Wang, M. Rolandi, H. Dai: Aharonov–Bohm interference and beating in single-walled carbon-nanotube interferrometers, Phys. Rev. Lett. 93, 216803 (2004)CrossRefGoogle Scholar
  269. 4.269.
    E.D. Minot, Y. Yaish, V. Sazonova, P.L. McEuen: Determination of electron orbital magnetic moments in carbon nanotubes, Nature 428, 536–539 (2004)CrossRefGoogle Scholar
  270. 4.270.
    P. Avouris, Z. Chen, V. Perebeinos: Carbon-based electronics, Nat. Nanotechnol. 2, 605–615 (2007)CrossRefGoogle Scholar
  271. 4.271.
    L.X. Benedict, S.G. Louie, M.L. Cohen: Heat capacity of carbon nanotubes, Solid State Commun. 100(3), 177–180 (1996)CrossRefGoogle Scholar
  272. 4.272.
    J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fischer: Quantized phonon spectrum of single-wall carbon nanotubes, Science 289(5485), 1730–1733 (2000)CrossRefGoogle Scholar
  273. 4.273.
    J. Heremans, C.P. Beetz: Thermal conductivity and thermopower of vapor-grown graphite fibers, Phys. Rev. B 32, 1981–1986 (1985)CrossRefGoogle Scholar
  274. 4.274.
    S. Berber, Y.-K. Kwon, D. Tománek: Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84, 4613–4616 (2000)CrossRefGoogle Scholar
  275. 4.275.
    J. Hone, M. Whitney, C. Piskoti, A. Zettl: Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59, R2514–R2516 (1999)CrossRefGoogle Scholar
  276. 4.276.
    E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai: Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 6(1), 96–100 (2006)CrossRefGoogle Scholar
  277. 4.277.
    C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar: Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5(9), 1842–1846 (2005)CrossRefGoogle Scholar
  278. 4.278.
    N. Mingo, D.A. Broido: Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95, 096105 (2005)CrossRefGoogle Scholar
  279. 4.279.
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001)CrossRefGoogle Scholar
  280. 4.280.
    A.N. Volkov, L.V. Zhigilei: Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials, Phys. Rev. Lett. 104, 215902 (2010)CrossRefGoogle Scholar
  281. 4.281.
    R.S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, P. Keblinski: Turning carbon nanotubes from exceptional heat conductors into insulators, Phys. Rev. Lett. 102, 105901 (2009)CrossRefGoogle Scholar
  282. 4.282.
    C.F. Cornwell, L.T. Wille: Elastic properties of single-walled carbon nanotubes in compression, Solid State Commun. 101, 555–558 (1997)CrossRefGoogle Scholar
  283. 4.283.
    J.P. Lu: Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79, 1297–1300 (1997)CrossRefGoogle Scholar
  284. 4.284.
    G. Overney, W. Zhong, D. Tomanek: Structural rigidity and low-frequency vibrational-modes of long carbon tubules, Z. Phys. D 27, 93–96 (1993)CrossRefGoogle Scholar
  285. 4.285.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high youngʼs modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  286. 4.286.
    B.I. Yakobson, C.J. Brabec, J. Bernholc: Nanomechanics of carbon tubes: Instabilities beyond linear range, Phys. Rev. Lett. 76, 2511–2514 (1996)CrossRefGoogle Scholar
  287. 4.287.
    E. Hernandez, C. Goze, A. Rubio: Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett. 80, 4502–4505 (1998)CrossRefGoogle Scholar
  288. 4.288.
    B.I. Yakobson, C.J. Brabec, J. Bernholc: Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture, J. Comput.-Aided Mater. Des. 3, 173–182 (1996)CrossRefGoogle Scholar
  289. 4.289.
    J. Tersoff: Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61, 2879–2882 (1988)CrossRefGoogle Scholar
  290. 4.290.
    D.W. Brenner: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458–9471 (1990)CrossRefGoogle Scholar
  291. 4.291.
    J. Tersoff, R.S. Ruoff: Structural-properties of a carbon nanotube crystal, Phys. Rev. Lett. 73, 676–679 (1994)CrossRefGoogle Scholar
  292. 4.292.
    B.I. Yakobson: Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes, Appl. Phys. Lett. 72, 918–920 (1998)CrossRefGoogle Scholar
  293. 4.293.
    T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff: Simulation of the fracture of nanotubes, Phys. Rev. B 65, 235430–1–235430–8 (2002)CrossRefGoogle Scholar
  294. 4.294.
    S. Ogata, Y. Shibutani: Ideal tensile strength and band gap of single-walled carbon nanotubes, Phys. Rev. B 68, 165409–1–165409–4 (2003)CrossRefGoogle Scholar
  295. 4.295.
    J. Bernholc, C. Brabec, M. Buongiorno Nardelli, A. Maiti, C.M. Roland, B.I. Yakobson: Theory of growth and mechanical properties of nanotubes, Appl. Phys. A 67, 39–46 (1998)CrossRefGoogle Scholar
  296. 4.296.
    T. Dumitrica, M. Hua, B.I. Yakobson: Symmetry-, time-, and temperature-dependent strength of carbon nanotubes, PNAS 103, 6105–6109 (2006)CrossRefGoogle Scholar
  297. 4.297.
    M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski: Mechanical properties of carbon nanotubes with vacancies and related defects, Phys. Rev. B 70, 245416–1–245416–8 (2004)CrossRefGoogle Scholar
  298. 4.298.
    A.J. Stone, D.J. Wales: Theoretical-studies of icosahedral C60 and some related species, Chem. Phys. Lett. 128, 501–503 (1986)CrossRefGoogle Scholar
  299. 4.299.
    T. Dumitrica, T. Belytschko, B.I. Yakobson: Bond-breaking bifurcation states in carbon nanotube fracture, J. Chem. Phys. 118, 9485–9488 (2003)CrossRefGoogle Scholar
  300. 4.300.
    M. Buongiorno Nardelli, B.I. Yakobson, J. Bernholc: Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett. 81, 4656–4659 (1998)CrossRefGoogle Scholar
  301. 4.301.
    M. Menon, E. Richter, K.R. Subbaswamy: Structural and vibrational properties of fullerenes and nanotubes in a nonorthogonal tight-binding scheme, J. Chem. Phys. 104, 5875–5882 (1996)CrossRefGoogle Scholar
  302. 4.302.
    D. Srivastava, M. Menon, K. Cho: Nanoplasticity of single-wall carbon nanotubes under uniaxial compression, Phys. Rev. Lett. 83, 2973–2976 (1999)CrossRefGoogle Scholar
  303. 4.303.
    J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró: Elastic and shear moduli of single-walled carbon nanotube, Phys. Rev. Lett. 82(5), 944–947 (1999)CrossRefGoogle Scholar
  304. 4.304.
    D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)CrossRefGoogle Scholar
  305. 4.305.
    M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552–5555 (2000)CrossRefGoogle Scholar
  306. 4.306.
    S.A. Chesnokov, V.A. Nalimova, A.G. Rinzler, R.E. Smalley, J.E. Fischer: Mechanical energy storage in carbon nanotube springs, Phys. Rev. Lett. 82, 343–346 (1999)CrossRefGoogle Scholar
  307. 4.307.
    J. Tang, L.C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, S. Iijima: Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure, Phys. Rev. Lett. 85, 1887–1889 (2000)CrossRefGoogle Scholar
  308. 4.308.
    A. Krishnan, E. Dujardin, T.W. Ebbessen, P.N. Yianilos, M.M.J. Treacy: Youngʼs modulus of single-walled nanotubes, Phys. Rev. B 58, 14013–14019 (1998)CrossRefGoogle Scholar
  309. 4.309.
    M.-S. Wang, D. Golberg, Y. Bando: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects, Adv. Mater. 22, 4071–4075 (2010)CrossRefGoogle Scholar
  310. 4.310.
    J.Y. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, Z.F. Ren: Superplastic carbon nanotubes, Nature 439, 281 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2013

Authors and Affiliations

  1. 1.Electrical and Computer Engineering & Physics and AstronomyRice UniversityHoustonUSA
  2. 2.Department of Physics & AstronomyRice UniversityHoustonUSA
  3. 3.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  4. 4.Department of Electrica and Computer EngineeringRice UniversityHoustonUSA
  5. 5.National High Magnetic Field LaboratoryLos Alamos National LaboratoryLos AlamosUSA
  6. 6.Electrical and Computer EngineeringRice UniversityHoustonUSA
  7. 7.Intel CorporationHillsboroUSA
  8. 8.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  9. 9.Electrical and Computer Engineering & Physics and AstronomyRice UniversityHoustonUSA

Personalised recommendations