Skip to main content

Nanostructured Materials for Energy-Related Applications

  • Chapter
Springer Handbook of Nanomaterials

Part of the book series: Springer Handbooks ((SHB))

Abstract

Materials play a key role especially in the field of energy storage and conversion. Design of efficient and cost-effective materials for energy applications is of prime research focus. This chapter presents the recent trends in the energy-related applications of various carbon nanotubes (CNT) and their hybrid nanostructures. Development of CNT-based electrocatalysts for proton exchange membrane fuel cells and CNT-based electrodes for supercapacitors and Li-ion batteries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

one-dimensional

AC:

alternating current

AFC:

alkaline fuel cell

CNT:

carbon nanotube

CO:

cuboctahedron

CV:

cyclic voltammetry

CVD:

chemical vapor deposition

DAFC:

direct alcohol fuel cell

DC:

direct current

DEFC:

direct ethanol fuel cell

DMFC:

direct methanol fuel cell

ECDL:

electrochemical double layer

ECP:

electronically conducting polymer

ECSA:

electrochemically active surface area

EDAX:

energy dispersive analysis

EDLC:

electric double-layer capacitor

EDX:

energy-dispersive x-ray spectroscopy

EIS:

electrochemical impedance spectroscopy

ESR:

equivalent series resistance

HRTEM:

high-resolution transmission electron microscopy

MCFC:

molten carbonate fuel cell

MEA:

membrane electrode assembly

MFC:

microbial fuel cell

MWNT:

multiwalled nanotubes

ORR:

oxygen reduction reaction

PAFC:

phosphoric acid fuel cell

PANI:

polyaniline

PEMFC:

proton exchange membrane fuel cell

PGM:

platinum group metal

PPy:

polypyrrole

PTFE:

polytetrafluoroethylene

RHE:

reversible hydrogen electrode

RT:

room temperature

SCE:

saturated calomel electrode

SEI:

solid–electrolyte interphase

SEM:

scanning electron microscopy

SOFC:

solid oxide fuel cell

SS:

stainless steel

SWNT:

single-walled nanotube

TEM:

transmission electron microscopy

XRD:

x-ray diffraction

References

  1. H.W. Kroto, J.R. Heath, S.C. OʼBrien, R.F. Curl, R.E. Smalley: C_60: Buckminsterfullerene, Nature 318, 162–163 (1985)

    CAS  Google Scholar 

  2. R. Kötz, M. Carlen: Principles and applications of electrochemical capacitors, Electrochim. Acta 45, 2483–2498 (2000)

    Google Scholar 

  3. P.M. Ajayan: Carbon nanotubes. In: Handbook of Nanostructured Materials and Nanotechnology, Vol. 5, ed. by H.S. Nalwa (Academic, San Diego 2000) pp. 329–360

    Google Scholar 

  4. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)

    CAS  Google Scholar 

  5. P.J. Britto, K.S.V. Santhanam, A. Rubio, A. Alonso, P.M. Ajayan: Improved charge transfer on carbon nanotube electrodes, Adv. Mater. 11, 154–157 (1999)

    CAS  Google Scholar 

  6. P. Costamagna, S. Srinivasan: Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part II. Engineering, technology development and application aspects, J. Power Source 102, 253–269 (2001)

    CAS  Google Scholar 

  7. S.M. Haile: Fuel cell materials and components, Acta Mater. 51, 5981–6000 (2003)

    CAS  Google Scholar 

  8. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. 56, 9–35 (2005)

    CAS  Google Scholar 

  9. L. Xiong, A. Manthiram: Nanostructured Pt–M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells, Electrochim. Acta 50, 2323–2329 (2005)

    CAS  Google Scholar 

  10. J.R.C. Salgado, E. Antolini, E.R. Gonzalez: Carbon supported Pt_70Co_30 electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells, J. Power Source 141, 13–18 (2005)

    CAS  Google Scholar 

  11. P. Yu, M. Pemberton, P. Plasse: PtCo/C cathode catalyst for improved durability in PEMFCs, J. Power Source 144, 11–20 (2005)

    CAS  Google Scholar 

  12. A. Kabbabi, F. Gloaguen, F. Andolfatto, R. Durand: Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane, J. Electroanal. Chem. 373, 251–254 (1994)

    CAS  Google Scholar 

  13. J.S. Yu, S. Kang, S.B. Yoon, G. Chai: Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter, J. Am. Chem. Soc. 124, 9382–9383 (2002)

    CAS  Google Scholar 

  14. J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan: Application of carbon nanotubes as supports in heterogeneous catalysis, J. Am. Chem. Soc. 116, 7935–7936 (1994)

    CAS  Google Scholar 

  15. Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan: Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir 18, 4054–4060 (2002)

    CAS  Google Scholar 

  16. E.T. Michelson, I.W. Chiang, J.L. Zimmermann, P.J. Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, J.L. Margrave: Solvation of Fluorinated Single-Wall Carbon Nanotubes in Alcohol Solvents, J. Phys. Chem. B 103, 4318–4322 (1999)

    Google Scholar 

  17. V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, A. Hirsch: Organic functionalization of carbon nanotubes, J. Am. Chem. Soc. 124, 760–761 (2002)

    CAS  Google Scholar 

  18. B.C. Satishkumar, E.M. Vogl, A. Govindaraj, C.N.R. Rao: The decoration of carbon nanotubes by metal nanoparticles, J. Phys. D 29, 3173 (1996)

    CAS  Google Scholar 

  19. V. Lordi, N. Yao, J. Wei: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst, Chem. Mater. 13, 733–737 (2001)

    CAS  Google Scholar 

  20. H.C. Choi, M. Shim, S. Bangsaruntip, H. Dai: Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes, J. Am. Chem. Soc. 124, 9058–9059 (2002)

    CAS  Google Scholar 

  21. C.R.K. Rao, D.C. Trivedi: Chemical and electrochemical depositions of platinum group metals and their applications, Coord. Chem. Rev. 249, 613–631 (2005)

    CAS  Google Scholar 

  22. A. Freund, J. Lang, T. Lehman, K.A. Starz: Improved Pt alloy catalysts for fuel cells, Catal. Today 27, 279–283 (1996)

    CAS  Google Scholar 

  23. H.F. Cui, J.S. Ye, W.D. Zhang, J. Wang, F.S. Sheu: Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode, J. Electroanal. Chem. 577, 295–302 (2005)

    CAS  Google Scholar 

  24. H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao: High dispersion and electrocatalytic properties of platinum on well aligned carbon nanotube arrays, Carbon 42, 191–197 (2004)

    CAS  Google Scholar 

  25. W. Li, C. Liang, W. Zhao, J. Qiu, Z. Zhou, G. Sun, Q. Xin: Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, J. Phys. Chem. B 107, 6292–6299 (2003)

    CAS  Google Scholar 

  26. Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang: Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol oxidation, Diamond Relat. Mater. 13, 1764–1770 (2004)

    CAS  Google Scholar 

  27. S.J. Lee, A.C. Chien, S.W. Cha, R. OʼHayre, Y.I. Park, Y. Saito, F.B. Prinz: Design and fabrication of a micro fuel cell array with “flip-flop” interconnection, J. Power Source 112, 410–418 (2002)

    CAS  Google Scholar 

  28. K. Cowey, K.J. Green, G.O. Mepsted, R. Reeve: Portable and military fuel cells, Curr. Opin. Solid State Mater. Sci. 8, 367–371 (2004)

    CAS  Google Scholar 

  29. D.J. Seo, W.L. Yoon, Y.G. Yoon, S.H. Park, G.G. Park, G.S. Kim: Development of a micro fuel processor for PEMFCs, Electrochim. Acta 50, 719–723 (2004)

    CAS  Google Scholar 

  30. A.L.M. Reddy, S. Ramaprabhu: Design, fabrication and testing of carbon nanotube based fuel cell stack and micro fuel cell coupled with hydrogen storage device, Int. J. Hydrogen Energy 32, 4272 (2007)

    CAS  Google Scholar 

  31. Y. Yamazaki: Application of MEMS technology to micro fuel cells, Electrochim. Acta 50, 663–666 (2004)

    CAS  Google Scholar 

  32. R. Hahn, S. Wagner, A. Schmitz, H. Reichl: Development of a planar micro fuel cell with thin film and micro patterning technologies, J. Power Source 131, 73–78 (2004)

    CAS  Google Scholar 

  33. R. Kötz, M. Carlen: Principles and applications of electrochemical capacitors, Electrochim. Acta 45, 2483–2498 (2000)

    Google Scholar 

  34. S. Sarangapani, B.V. Tilak, C.P. Chen: Review – materials for electrochemical capacitors, J. Electrochem. Soc. 143, 3791–3799 (1996)

    CAS  Google Scholar 

  35. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Source 101, 109–116 (2001)

    CAS  Google Scholar 

  36. E. Frackowiak, F. Beguin: Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39, 937–950 (2001)

    CAS  Google Scholar 

  37. Y. Kibi, T. Saito, M. Kurata, J. Tabuchi, A. Ochi: Fabrication of high-power electric double-layer capacitors, J. Power Source 60, 219–224 (1996)

    CAS  Google Scholar 

  38. Y.H. Lee, K.H. An, J.Y. Lee, S.C. Lim: Carbon nanotube-based supercapacitors. In: Encyclopedia of Nanoscience and Nanotechnology, Vol. 1, ed. by H.S. Nalwa (American Scientific, Valencia 2004) p. 625

    Google Scholar 

  39. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennet: High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70, 1480–1482 (1997)

    CAS  Google Scholar 

  40. E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin: Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett. 77, 2421–2423 (2000)

    CAS  Google Scholar 

  41. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater. 11, 387–392 (2001)

    CAS  Google Scholar 

  42. V. Khomenko, E. Frackowiak, F. Beguin: Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochim. Acta 50, 2499–2506 (2005)

    CAS  Google Scholar 

  43. J.Y. Lee, K. Liang, K.H. An, Y.H. Lee: Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance, Synth. Met. 150, 153–157 (2005)

    CAS  Google Scholar 

  44. G.X. Wang, B.L. Zhang, Z.L. Yu, M.Z. Qu: Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ion. 176, 1169–1174 (2005)

    CAS  Google Scholar 

  45. A. Du Pasquier, A. Laforgue, P. Simon, G.G. Amatucci, J.-F. Fauvarque: A nonaqueous asymmetric hybrid Li_4Ti_5O_12/poly(fluorophenylthiophene) energy storage device, J. Electrochem. Soc. 149, A302 (2002)

    CAS  Google Scholar 

  46. M. Armand, J.M. Tarascon: Building better batteries, Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  47. M.S. Whittingham: Lithium Batteries and Cathode Materials, Chem. Rev. 104, 4271–4302 (2004)

    CAS  Google Scholar 

  48. W. Van Schalkwijk, B. Scrosati: Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, New York 2002)

    Google Scholar 

  49. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon: High rate capabilities Fe_3O_4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. Mater. 5, 567–573 (2006)

    CAS  Google Scholar 

  50. S.Y. Chung, J.T. Bloking, Y.M. Chiang: Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater. 1, 123–128 (2002)

    CAS  Google Scholar 

  51. N. Li, C.R. Martin, B. Scrosati: A high-rate, high-capacity, nanostructured tin oxide electrode, Electrochem. Solid-State Lett. 3, 316–318 (2000)

    CAS  Google Scholar 

  52. A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4, 366–377 (2005)

    Google Scholar 

  53. A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan: Coaxial MnO_2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett. 9, 1002–1006 (2009)

    CAS  Google Scholar 

  54. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita: Recent development of carbon materials for Li ion batteries, Carbon 38, 183–197 (1999)

    Google Scholar 

  55. S.H. Lee, Y.H. Kim, R. Deshpande, P.A. Parilla, E. Whitney, D.T. Gillaspie, K.M. Jones, A.H. Mahan, S. Zhang, A.C. Dillon: Reversible lithium-ion insertion in molybdenum oxide nanoparticles, Adv. Mater. 20, 3627–3632 (2008)

    CAS  Google Scholar 

  56. E. Peled: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems – the solid electrolyte interphase mode, J. Electrochem. Soc. 126, 2047–2051 (1979)

    CAS  Google Scholar 

  57. R. Fong, V. von Schen, J.R. Aohn: Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc. 137, 2009–2013 (1990)

    CAS  Google Scholar 

  58. R. Hanno, Y. Kawamdo: Carbon fiber as a negative electrode in lithium secondary cells, J. Electrochem. Soc. 139, 3397–3404 (1992)

    Google Scholar 

  59. R.S. Morris, B.G. Dixon, T. Gennett, R. Raffaelle, M.J. Heben: Rechargeable Li-ion battery based on carbon nanotube technology, J. Power Source 138, 277–280 (2004)

    CAS  Google Scholar 

  60. Z. Zhou, J.J. Zhao, X.P. Gao, Z.F. Chen, J. Yan, P.V. Schiever, M. Morinaga: Do composite single-walled nanotubes have enhanced capability for lithium storage?, Chem. Mater. 17, 992–1000 (2005)

    CAS  Google Scholar 

  61. M. Wakihara, O. Yamamoto (Eds.): Lithium Ion Batteries-Fundamentals and Performance, Vol. 3 (Wiely-VCH, Weinheim 1998), No. 4

    Google Scholar 

  62. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin: Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon 37, 61–69 (1999)

    CAS  Google Scholar 

  63. F. Beguin, K. Metenier, R. Pellenq, S. Bonnamy, E. Frackowiak: Lithium insertion in carbon nanotubes, J. Mol. Cryst. Liq. Cryst. 340, 547–552 (2000)

    CAS  Google Scholar 

  64. J.F. Snyder, E.L. Wong, C.W. Hubbard: Evaluation of commercially available carbon fibers, fabrics, and papers for potential use in multifunctional energy storage applications, J. Electrochem. Soc. 156, A215–A224 (2009)

    CAS  Google Scholar 

  65. J.O. Bosenhard (Ed.): Handbook of Battery Materials (VCH, Weinheim 1998)

    Google Scholar 

  66. R.A. Huggins: Lithium alloy negative electrodes formed from convertible oxides, Solid State Ion. 57, 113–115 (1998)

    Google Scholar 

  67. J.O. Besenhard, J. Yang, M. Winter: Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?, J. Power Source 68, 87–90 (1997)

    CAS  Google Scholar 

  68. M. Winter, J.O. Besenhard: Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta 45, 31–50 (1999)

    CAS  Google Scholar 

  69. H. Mukaibo, T. Osaka, P. Reale, S. Panero, B. Scrosati, M. Wachtler: Optimized Sn/SnSb lithium storage materials, J. Power Source 132, 225–228 (2004)

    CAS  Google Scholar 

  70. I. Amadei, S. Panero, B. Scrosati, G. Cocco, L. Schiffini: The Ni_3Sn_4 intermetallic as a novel electrode in lithium cells, J. Power Source 143, 227–230 (2005)

    CAS  Google Scholar 

  71. H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, T. Osaka: Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries, Electrochem. Solid-State Lett. 6, A218–A220 (2003)

    CAS  Google Scholar 

  72. J. Hassoun, S. Panero, B. Scrosati: Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries, J. Power Source 160, 1336–1341 (2006)

    CAS  Google Scholar 

  73. M. Green, E. Fielder, B. Scrosati, M. Wachtler, J. Serra Moreno: Structured silicon anodes for lithium battery applications, Electrochem. Solid-State Lett. 6, A75–A79 (2003)

    CAS  Google Scholar 

  74. P.L. Taberna, S. Mitra, P. Piozot, P. Simon, J.M. Tarascon: High rate capabilities Fe_3O_4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. Mater. 5, 567–573 (2006)

    CAS  Google Scholar 

  75. M.M. Thackeray: Manganese oxides for lithium batteries, Prog. Solid State Chem. 25, 1–71 (1997)

    CAS  Google Scholar 

  76. F. Jiao, P.G. Bruce: Mesoporous Crystalline β-MnO_2 – a reversible positive electrode for rechargeable lithium batteries, Adv. Mater. 19, 657–660 (2007)

    CAS  Google Scholar 

  77. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407, 496–499 (2000)

    CAS  Google Scholar 

  78. F. Badway, I. Plitz, S. Grugeon, S. Laruelle, M. Dolle, A.S. Gozdz, J.M. Tarascon: Metal oxides as negative electrode materials in li-ion cells, Electrochem. Solid-State Lett. 5(6), A115–A118 (2002)

    CAS  Google Scholar 

  79. K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang, A.M. Belcher: Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science 312, 885–888 (2006)

    CAS  Google Scholar 

  80. C.K. Chan, H. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, Y. Cui: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons, Nano Lett. 7, 490–495 (2007)

    CAS  Google Scholar 

  81. A.C. Dillon, A.H. Mahan, R. Deshpande, P.A. Parilla, K.M. Jones, S.H. Lee: Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies, Thin Solid Films 516, 794–797 (2008)

    CAS  Google Scholar 

  82. V. Subramanian, W.W. Burke, H. Zhu, B. Wei: Novel microwave synthesis of nanocrystalline SnO_2 and its electrochemical properties, J. Phys. Chem. C 112, 4550–4556 (2008)

    CAS  Google Scholar 

  83. L. Kavan, I. Exnar, J. Cech, M. Graetzel: Enhancement of electrochemical activity of LiFePO_4 (olivine) by amphiphilic ru-bipyridine complex anchored to a carbon nanotube, Chem. Mater. 19(19), 4716–4721 (2007)

    CAS  Google Scholar 

  84. F. Badway, A.N. Mansour, N. Pereira, J.F. Al-Sharab, F. Cosandey, I. Plitz, G.G. Amatucci: Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices, Chem. Mater. 19(17), 4129–4141 (2007)

    CAS  Google Scholar 

  85. G. Derrien, J. Hassoun, S. Panero, B. Scrosati: Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries, Adv. Mater. 19, 2336–2340 (2007)

    CAS  Google Scholar 

  86. S.H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.P. Guo, H.K. Liu: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries, Angew. Chem. Int. Ed. 45, 6896–6899 (2006)

    CAS  Google Scholar 

  87. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed: Shape-controlled synthesis of colloidal platinum nanoparticles, Science 272, 1924–1925 (1996)

    CAS  Google Scholar 

  88. P. Serp, M. Corrias, P. Kalck: Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A 253, 337–358 (2003)

    CAS  Google Scholar 

  89. G.L. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin: Carbon nanotubule membranes for electrochemical energy storage and production, Nature 393, 346–349 (1998)

    CAS  Google Scholar 

  90. B. Rajesh, K.R. Thampi, J.M. Bonard, N. Xanthopoulos, H.J. Mathieu, B. Viswanathan: Carbon nanotubes generated from template carbonization of polyphenyl acetylene as the support for electrooxidation of methanol, J. Phys. Chem. B 107, 2701–2708 (2003)

    CAS  Google Scholar 

  91. M. Mastragostino, A. Missiroli, F. Soavi: Carbon supports for electrodeposited Pt-Ru catalysts for DMFCs, J. Electrochem. Soc. 151, A1919–A1924 (2004)

    CAS  Google Scholar 

  92. Y. Shao, G. Yin, Y. Gao, P. Shi: Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions, J. Electrochem. Soc. 153, A1093–A1097 (2006)

    CAS  Google Scholar 

  93. H.C. Choi, M. Shim, S. Bangsaruntip, H. Dai: Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes, J. Am. Chem. Soc. 124, 9058–9059 (2002)

    CAS  Google Scholar 

  94. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher: Metal-nanocluster- filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production, Langmuir 15(3), 750–758 (1999)

    CAS  Google Scholar 

  95. A.L.M. Reddy, M.M. Shaijumon, N. Rajalakshmi, S. Ramaprabhu: Performance of PEMFC using Pt/MWNT-Pt/C composites as electrocatalysts for oxygen reduction reaction in PEMFC, J. Fuel Cell Sci. Technol. 7, 021001 (2010)

    Google Scholar 

  96. A.L.M. Reddy, S. Ramaprabhu: Pt/SWNT-Pt/C nanocomposites as electrocatalysts for proton exchange membrane fuel cell, J. Phys. Chem. C 111(21), 16138 (2007)

    CAS  Google Scholar 

  97. A.L.M. Reddy, M.M. Shaijumon, S. Ramaprabhu: Alloy hydride catalyst route of synthesis of singlewalled carbon nanotubes, multiwalled carbon nanotubes and magnetic metal nanowire encapsulated multi walled carbon nanotubes, Nanotechnology 17, 5299 (2006)

    CAS  Google Scholar 

  98. G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. McGinn, P.V. Kamat: Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells, Langmuir 21, 8487 (2005)

    CAS  Google Scholar 

  99. M. Sogaard, M. Odgaard, E.M. Skou: An improved method for the determination of the electrochemical active area of porous composite platinum electrodes, Solid State Ion. 145, 31 (2001)

    CAS  Google Scholar 

  100. S.C. Thomas, X.M. Ren, S. Gottesfeld, P. Zelenay: Direct methanol fuel cells: Progress in cell performance and cathode research, Electrochim. Acta. 47, 3741–3748 (2002)

    CAS  Google Scholar 

  101. J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic: Platinum monolayer on non-noble metal-noble metal core-shell nanoparticle electrocatalysts for O_2 reduction, J. Phys. Chem. B 109, 22701–22704 (2005)

    CAS  Google Scholar 

  102. G. Avgouropoulos, T. Loannides, C. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis: A comparative study of Pt/γ-Al_2O_3, Au/α-Fe_2O_3 and CuO–CeO_2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catal. Today 75, 157 (2002)

    CAS  Google Scholar 

  103. H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe: Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite, Appl. Catal. A. 159, 159 (1997)

    CAS  Google Scholar 

  104. X. Zhang, L.P. Filho, C. Torras, R. Garcia-Valls: Experimental and computational study of proton and methanol permeabilities through composite membranes, J. Power Source 145, 223 (2005)

    CAS  Google Scholar 

  105. J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic: Platinum monolayer on non-noble metal-noble metal core-shell nanoparticle electrocatalysts for O_2 reduction, J. Phys. Chem. B 109, 22701 (2005)

    CAS  Google Scholar 

  106. J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic: Platinum monolayer electrocatalysts for O_2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles, J. Phys. Chem. B 108, 10955 (2004)

    CAS  Google Scholar 

  107. M. Wojciechowska, M. Zielinski, A. Malczewska, W. Przystajko, M. Pietrowski: Copper–cobalt oxide catalysts supported on MgF_2 or Al_2O_3 – their structure and catalytic performance, Appl. Catal. A 298, 225 (2006)

    CAS  Google Scholar 

  108. P. Thormahlen, M. Skoglundh, E. Fridell, B. Andersson: Low-temperature CO oxidation over platinum and cobalt oxide catalysts, J. Catal. 188, 300 (1999)

    CAS  Google Scholar 

  109. P. Konova, M. Stoyanova, A. Naydenov, S. Christoskova, D. Mehandjiev: Catalytic oxidation of VOCs and CO by ozone over alumina supported cobalt oxide, Appl. Catal. A 298, 109 (2006)

    CAS  Google Scholar 

  110. S.G. Christoskova, M. Stoyanova, M. Georgieva: Low-temperature iron-modified cobalt oxide system: Part I. Preparation and characterization, Appl. Catal. A 208, 235 (2001)

    CAS  Google Scholar 

  111. A.J. Appleby: Electrocatalysis of aqueous dioxygen reduction, J. Electroanal. Chem. 357, 117–179 (1993)

    CAS  Google Scholar 

  112. R. Bashyam, P. Zelenay: A class of non-precious metal composite catalysts for fuel cells, Nature 443, 63 (2006)

    CAS  Google Scholar 

  113. A.L.M. Reddy, N. Rajalakshmi, S. Ramaprabhu: Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells, Carbon 46, 2 (2008)

    CAS  Google Scholar 

  114. J. Prabhuram, T.S. Zhao, Z.K. Tang, R. Chen, Z.X. Liang: Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells, J. Phys. Chem. B. 110, 5245–5252 (2006)

    CAS  Google Scholar 

  115. W.J. Zhou, W.Z. Li, S.Q. Song, Z.H. Zhou, L.H. Jiang, G.Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, P. Tsiakaras: Bi- and tri-metallic Pt based anode catalysts for direct ethanol fuel cells, J. Power Source 131, 217 (2004)

    CAS  Google Scholar 

  116. J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim: Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun 21, 2177–2178 (1999)

    Google Scholar 

  117. E. Frackowiak, F. Beguin: Carbon materials for the electrochemical storage of energy in capacitors, Carbon 39, 937–950 (2001)

    CAS  Google Scholar 

  118. D. Qu, H. Shi: Studies of activated carbons used in double-layer capacitors, J. Power Source 74, 99–107 (1998)

    CAS  Google Scholar 

  119. T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada: Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J. Power Source 60, 249–253 (1996)

    CAS  Google Scholar 

  120. Y.H. Lee, K.H. An, J. Lee, L. Young, C. Seong: Encycl. Nanosci. Nanotechnol. 1(1), 625–634 (2010)

    Google Scholar 

  121. J.P. Zheng, P.J. Cygan, T.R. Jow: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142, 2699–2703 (1995)

    CAS  Google Scholar 

  122. N.L. Wu: Nanocrystalline oxide supercapacitors, Mater. Chem. Phys. 75, 6–11 (2002)

    CAS  Google Scholar 

  123. T.C. Liu, W.G. Pell, B.E. Conway: Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance, Electrochim. Acta 44, 2829–2842 (1999)

    CAS  Google Scholar 

  124. V. Srinivasan, J.W. Weidner: Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration, J. Electrochem. Soc. 147, 880–885 (2000)

    CAS  Google Scholar 

  125. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, D. Bélanger: Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A 82, 599–606 (2006)

    CAS  Google Scholar 

  126. B.E. Conway, V. Birss, J. Wojtowicz: The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Source 66, 1–14 (1997)

    CAS  Google Scholar 

  127. A. Laforgue, P. Simon, C. Sarrazin, J.F. Fauvarque: Polythiophene-based supercapacitors, J. Power Source 88, 142–148 (1999)

    Google Scholar 

  128. M. Mastragostino, C. Arbizzani, F. Soavi: Polymer-based supercapacitors, J. Power Source 97–98, 812–815 (2001)

    Google Scholar 

  129. D. Bélanger, X. Ren, J. Davey, F. Uribe, S. Gottesfeld: Characterization and long-term performance of polyaniline-based electrochemical capacitors, J. Electrochem. Soc. 147, 2923–2929 (2000)

    Google Scholar 

  130. C. Arbizzani, M. Mastragostino, F. Soavi: New trends in electrochemical supercapacitors, J. Power Source 100, 164–170 (2001)

    CAS  Google Scholar 

  131. J.C. Carlberg, O. Inganas: Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors, J. Electrochem. Soc. 144, L61–L64 (1997)

    CAS  Google Scholar 

  132. Q. Xiao, X. Zhou: The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor, Electrochim. Acta 48, 575–580 (2003)

    CAS  Google Scholar 

  133. L. Li, D.C. Loveday, D.S.K. Mudigonda, J.P. Ferraris: Effect of electrolytes on performance of electrochemical capacitors based on poly[3-(3,4-difluorophenyl)thiophene], J. Electrochem. Soc. 149, A1201–A1207 (2002)

    CAS  Google Scholar 

  134. K.S. Ryu, K.M. Kim, N.G. Park, S.H. Chang: Symmetric redox supercapacitor with conducting polyaniline electrodes, J. Power Source 103, 305–309 (2002)

    CAS  Google Scholar 

  135. C. Portet, P.L. Taberna, P. Simon, E. Flahaut: Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte, J. Power Source 139, 371–378 (2005)

    CAS  Google Scholar 

  136. F. Beguin, K. Szostak, G. Lota, E. Frackowiak: A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends, Adv. Mater. 17, 2380–2384 (2005)

    CAS  Google Scholar 

  137. Y. Kim, T. Mitani: Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance: Balancing hydrophilicity and conductivity, J. Power Source 158, 1517–1522 (2006)

    CAS  Google Scholar 

  138. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater. 11, 387–392 (2001)

    CAS  Google Scholar 

  139. G.X. Wang, B.L. Zhang, Z.L. Yu, M.Z. Qu: Manganese oxide/MWNTs composite electrodes for supercapacitors, Solid State Ion. 176, 1169–1174 (2005)

    CAS  Google Scholar 

  140. G. Arabale, D. Wagh, M. Kulkarni, I.S. Mulla, S.P. Vernekar, K. Vijayamohanan, A.M. Rao: Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide, Chem. Phys. Lett. 376, 207–213 (2003)

    CAS  Google Scholar 

  141. W. Sugimoto, H. Iwata, K. Yokoshima, K.Y. Murakami, Y. Takasu: Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: The origin of large capacitance, J. Phys. Chem. B 109, 7330 (2005)

    CAS  Google Scholar 

  142. A.L.M. Reddy, S. Ramaprabhu: Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes, J. Phys. Chem. C 111(44), 16138–16146 (2007)

    CAS  Google Scholar 

  143. F.E. Amitha, A.L.M. Reddy, S. Ramaprabhu: A non-aqueous electrolyte based asymmetric supercapacitor with polymer and metal oxide/multiwalled nanotube electrodes, J. Nanopart. Res. 11(3), 725 (2009)

    CAS  Google Scholar 

  144. H.K. Song, H.Y. Hwang, K.H. Lee, L.H. Dao: The effect of pore size distribution on the frequency dispersion of porous electrodes, Electrochim. Acta. 45, 2241–2257 (2000)

    CAS  Google Scholar 

  145. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4, 366–377 (2005)

    CAS  Google Scholar 

  146. F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati: Nanocomposite polymer electrolytes for lithium batteries, Nature 394, 456–458 (1998)

    CAS  Google Scholar 

  147. M.M. Thackeray, M.H. Rossouw, A. de Kock, A.P. de la Harpe, R.J. Gummow, K. Pearce, D.C. Liles: The versatility of MnO_2 for lithium battery applications, J. Power Source 434, 289–300 (1993)

    Google Scholar 

  148. J. Desilvestro, O. Haas: Metal oxide cathode materials for electrochemical energy storage: A review, J. Electrochem. Soc. 137, C5–C22 (1990)

    Google Scholar 

  149. M. Sugantha, P.A. Ramakrishnan, A.M. Hermann, C.P. Warmsingh, D.S. Ginley: Nanostructured MnO_2 for Li batteries, Int. J. Hydrogen Energy 28, 597–600 (2003)

    CAS  Google Scholar 

  150. D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui: Spinel LiMn_2O_4 nanorods as lithium ion battery cathodes, Nano Lett. 8(11), 3948–3952 (2008)

    CAS  Google Scholar 

  151. M.S. Wu, P.C.J. Chiang, J.T. Lee, J.C. Lin: Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries, J. Phys. Chem. B 109, 23279–23284 (2005)

    CAS  Google Scholar 

  152. F. Cheng, Z. Tao, J. Liang, J. Chen: Template-directed materials for rechargeable lithium-ion batteries, J. Chem. Mater. 20, 667–681 (2008)

    CAS  Google Scholar 

  153. D.W. Kim, I.S. Hwang, S.J. Kwon, H.Y. Kang, K.S. Park, Y.J. Choi, K.J. Choi, J.G. Park: LiMn_2O_4 nanorods as lithium ion battery cathodes, Nano Lett. 7(10), 3041–3045 (2007)

    CAS  Google Scholar 

  154. A.L.M. Reddy, S.M. Manikoth, S.R. Gowda, P.M. Ajayan: Co-axial MnO_2/carbon nanotube array electrodes for high performance lithium batteries, Nano Lett. 9, 1002 (2009)

    CAS  Google Scholar 

  155. R. Liu, S.B. Lee: MnO_2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc. 130(10), 2942–2943 (2008)

    CAS  Google Scholar 

  156. R. Dedryvere, S. Laruelle, S. Grugeon, P. Poizot, D. Gonbeau, J.M. Tarascon: Contribution of x-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium, Chem. Mater. 16(6), 1056–1061 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arava L.M. Reddy or Sundara Ramaprabhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Reddy, A.L., Ramaprabhu, S. (2013). Nanostructured Materials for Energy-Related Applications. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_28

Download citation

Publish with us

Policies and ethics