Nanofiber Biomaterials

Abstract

Since its inception, the field of tissue engineering has sought to rebuild the complexity of normal tissues by seeding cells onto scaffolds to support the formation of new tissue. Recently, nanofibers have gained increasing attention because these biomaterials have unique properties and are able to interface with cells at the same scale as native extracellular matrix fibrils. New fabrication technologies provide novel ways to control the nanoscale structure and properties of biomaterials, which is advantageous in the engineering of tissues for in vitro study and in vivo applications in regenerative medicine. This chapter explores the properties of nanofiber biomaterials (diameters <500  nm) and examines the specific advantages relative to other scaffold materials. This includes nanofibers from biopolymers as well as synthetic polymers, with consideration of relative advantages and disadvantages. A range of fabrication strategies is discussed that span from fiber spinning techniques, to phase separation in bulk, to directed and self-assembly. Insight is provided as to how synthetic polymers and biopolymers are used to make these nanofibers and the specific molecular structures that impart the unique mechanical, electrical, chemical, and biological properties. Analysis of these nanofiber biomaterials requires characterization techniques that are able to probe at the nanometer, micrometer, and macroscales. Examples are provided using optical microscopy, electron microscopy, scanning probe microscopy, mechanical characterization, and as sessment of biocompatibility and biodegradation. Finally, nanofiber biomaterials have wide applications in tissue engineering; here we focus on representative examples in cardiac, musculoskeletal, ophthalmic, and neural tissue engineering.

Abbreviations

2-D

two-dimensional

3-D

three-dimensional

α-SMA

α-smooth muscle actin

AFM

atomic force microscopy

APC

antigen-presenting cell

ASTM

American Society for Testing and Materials

ATQD

N-(4-aminophenyl)-N′-(4′-(3-triethoxysilyl-propyl-ureido)phenyl-1,4-quinonenediimine)

BDNF

brain-derived neurotrophic factor

BFGF

basic fibroblast growth factor

C-PANI

conductive camphorsulfonic acid-doped emeraldine PANI

COLI

collagen I

COLIV

collagen IV

CS-PCL

chitosan-graft-PCL

CS

cross section

DAPI

4′,6-diamidino-2-phenylindole

DC

dendritic cell

DIC

differential interference contrast

DMF

dimethylformamide

DNA

deoxyribonucleic acid

DRG

dorsal root ganglion

ECM

extracellular matrix

EDS

energy-dispersive x-ray spectroscopy

ESC

embryonic stem cell

FDA

Food and Drug Administration

FIB

fibrinogen

FITC

fluorescein isothiocyanate

FN

fibronectin

IF

immunofluorescence

IKVAV-PA

IKVAV polyacrylamide

IKVAV

laminin derived self-assembling peptide

IL

interleukin

IR

infrared

LAM

laminin

LSC

limbal stem cells

MSC

mesenchymal stem cell

NGF

nerve growth factor

NSC

neural stem cell

PA

peptide amphiphile

PAA

poly(acrylic acid)

PANI

polyaniline

PBS

phosphate buffered saline

PCL-G

PCL-gelatin

PCL

poly(ε-caprolactone)

PDMS

polydimethylsiloxane

PEG

polyethylene glycol

PEO

poly(ethylene oxide)

PG

proteoglycan

PGA

poly(glycolic acid)

PGLA

copolymer of PGA and PLLA

PIPAAm

responsive poly(N-isopropylacrylamide)

PLA

poly-ethylene oxide

PLA

pulsed laser ablation

PLGA

poly(lactic-co-glycolic) acid

PLLA

poly(l-lactic) acid

PPy

polypyrrole

PRR

pattern recognition receptor

PVA

polyvinyl alcohol

RCF

rabbit corneal fibroblast

RGD

Arg-Gly-Asp

RJS

rotary jet spinning

RPC

retinal progenitor cells

RT-PCR

real-time polymerase chain reaction

SAM

self-assembled monolayer

SD

standard deviation

SEM

scanning electron microscopy

SF

silk fibroin

SIM

structured illumination microscopy

SMA

shape-memory alloy

STORM

stochastic optical reconstruction microscopy

TEM

transmission electron microscopy

TGF-β

transforming growth factor

THF

tetrahydrofuran

TNF-α

tumor necrosis factor

hSKMC

human skeletal muscle cell

iPSC

induced pluripotent stem cell

References

  1. 27.1.
    A. Alovskaya, T. Alekseeva, J.B. Phillips, V. King, R. Brown: Fibronectin, collagen, fibrin – Components of extracellular matrix for nerve regeneration, Top. Tissue Eng. 3, 1–26 (2007), Chap. 12, available online from http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol3/abstracts/alovskaya_chapter_01.pdf Google Scholar
  2. 27.2.
    P. Bruckner, M. van der Rest: Structure and function of cartilage collagens, Microsc. Res. Tech. 28(5), 378–384 (1994)CrossRefGoogle Scholar
  3. 27.3.
    J.S. Janicki, G.L. Brower: The role of myocardial fibrillar collagen in ventricular remodeling and function, J. Card. Fail. 8(6), S319–S325 (2002)CrossRefGoogle Scholar
  4. 27.4.
    K.E. Kadler, A. Hill, E.G. Canty-Laird: Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators, Curr. Opin. Cell Biol. 20(5), 495–501 (2008)CrossRefGoogle Scholar
  5. 27.5.
    K.E. Kadler, D.F. Holmes, J.A. Trotter, J.A. Chapman: Collagen fibril formation, Biochem. J. 316(1), 1–11 (1996)Google Scholar
  6. 27.6.
    A.J. Pope, G.B. Sands, B.H. Smaill, I.J. LeGrice: Three-dimensional transmural organization of perimysial collagen in the heart, Am. J. Physiol. Heart Circ. Physiol. 295(3), H1243–H1252 (2008)CrossRefGoogle Scholar
  7. 27.7.
    M. Bernfield, R. Kokenyesi, M. Kato, M.T. Hinkes, J. Spring, R.L. Gallo, E.J. Lose: Biology of the syndecans: A family of transmembrane heparan sulfate proteoglycans, Annu. Rev. Cell Biol. 8, 365–393 (1992)CrossRefGoogle Scholar
  8. 27.8.
    A. Woods, E.S. Oh, J.R. Couchman: Syndecan proteoglycans and cell adhesion, Matrix Biol. 17, 477–483 (1998)CrossRefGoogle Scholar
  9. 27.9.
    X. Lin: Functions of heparan sulfate proteoglycans in cell signaling during development, Development 131(24), 6009–6021 (2004)CrossRefGoogle Scholar
  10. 27.10.
    R. Raman, V. Sasisekharan, R. Sasisekharan: Structural insights into biological roles of protein-glycosaminoglycan interactions, Chem. Biol. 12(3), 267–277 (2005)CrossRefGoogle Scholar
  11. 27.11.
    L. Debelle, A.M. Tamburro: Elastin: Molecular description and function, Int. J. Biochem. Cell Biol. 31(2), 261–272 (1999)CrossRefGoogle Scholar
  12. 27.12.
    D.W. Urry, T. Hugel, M. Seitz, H.E. Gaub, L. Sheiba, J. Dea, J. Xu, T. Parker: Elastin: A representative ideal protein elastomer, Philos. Trans. R. Soc. B 357(1418), 169–184 (2002)CrossRefGoogle Scholar
  13. 27.13.
    J. Pedersen, M. Swartz: Mechanobiology in the third dimension, Ann. Biomed. Eng. 33(11), 1469–1490 (2005)CrossRefGoogle Scholar
  14. 27.14.
    H. Colognato, P.D. Yurchenco: Form and function: The laminin family of heterotrimers, Dev. Dynam. 218(2), 213–234 (2000)CrossRefGoogle Scholar
  15. 27.15.
    K.M. Malinda, H.K. Kleinman: The laminins, Int. J. Biochem. Cell Biol. 28(9), 957–959 (1996)CrossRefGoogle Scholar
  16. 27.16.
    Y. Mao, J.E. Schwarzbauer: Fibronectin fibrillogenesis, a cell-mediated matrix assembly process, Matrix Biol. 24(6), 389–399 (2005)CrossRefGoogle Scholar
  17. 27.17.
    L.G. Griffith, M.A. Swartz: Capturing complex 3D tissue physiology in vitro, Nat. Rev. Mol. Cell Biol. 7(3), 211–224 (2006)CrossRefGoogle Scholar
  18. 27.18.
    Q.P. Pham, U. Sharma, A.G. Mikos: Electrospinning of polymeric nanofibers for tissue engineering applications: A review, Tissue Eng. 12, 1197–1211 (2006)CrossRefGoogle Scholar
  19. 27.19.
    M. Li, Y. Guo, Y. Wei, A.G. MacDiarmid, P.I. Lelkes: Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials 27, 2705–2715 (2006)CrossRefGoogle Scholar
  20. 27.20.
    S.A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu, S. Mantero: Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering, Biomaterials 26(22), 4606–4615 (2005)CrossRefGoogle Scholar
  21. 27.21.
    W.J. Li, R.L. Mauck, J.A. Cooper, X. Yuan, R.S. Tuan: Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering, J. Biomech. 40(8), 1686–1693 (2007)CrossRefGoogle Scholar
  22. 27.22.
    J.S. Choi, S.J. Lee, G.J. Christ, A. Atala, J.J. Yoo: The influence of electrospun aligned poly(ε-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes, Biomaterials 29(19), 2899–2906 (2008)CrossRefGoogle Scholar
  23. 27.23.
    M.P. Prabhakaran, L. Ghasemi-Mobarakeh, S. Ramakrishna: Electrospun composite nanofibers for tissue regeneration, J. Nanosci. Nanotechnol. 11(4), 3039–3057 (2011)CrossRefGoogle Scholar
  24. 27.24.
    N.F. Huang, S. Patel, R.G. Thakar, J. Wu, B.S. Hsiao, B. Chu, R.J. Lee, S. Li: Myotube assembly on nanofibrous and micropatterned polymers, Nano Lett. 6(3), 537–542 (2006)CrossRefGoogle Scholar
  25. 27.25.
    X. Zong, H. Bien, C.Y. Chung, L. Yin, D. Fang, B.S. Hsiao, B. Chu, E. Entcheva: Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials 26, 5330–5338 (2005)CrossRefGoogle Scholar
  26. 27.26.
    M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker: Nanofiber assembly by rotary jet-spinning, Nano Lett. 10, 2257–2261 (2010)CrossRefGoogle Scholar
  27. 27.27.
    W.E. Teo, R. Inai, S. Ramakrishna: Technological advances in electrospinning of nanofibers, Sci. Technol. Adv. Mater. 12(1), 013002–013021 (2011)CrossRefGoogle Scholar
  28. 27.28.
    K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, K. Lozano: Electrospinning to forcespinning (TM), Mater. Today 13(11), 12–14 (2010)CrossRefGoogle Scholar
  29. 27.29.
    R.L. Dahlin, F.K. Kasper, A.G. Mikos: Polymeric nanofibers in tissue engineering, Tissue Eng. B 17(5), 349–364 (2011)CrossRefGoogle Scholar
  30. 27.30.
    P.X. Ma, R. Zhang: Synthetic nano-scale fibrous extracellular matrix, J. Biomed. Mater. Res. 46(1), 60–72 (1999)CrossRefGoogle Scholar
  31. 27.31.
    R. Zhang, P.X. Ma: Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures, J. Biomed. Mater. Res. 52(2), 430–438 (2000)CrossRefGoogle Scholar
  32. 27.32.
    L. He, B. Liu, G. Xipeng, G. Xie, S. Liao, D. Quan, D. Cai, J. Lu, S. Ramakrishna: Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering, Eur. Cell Mater. 18, 63–74 (2009)Google Scholar
  33. 27.33.
    X.T. Li, Y. Zhang, G.Q. Chen: Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials, Biomaterials 29(27), 3720–3728 (2008)CrossRefGoogle Scholar
  34. 27.34.
    X.H. Liu, P.X. Ma: Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds, Biomaterials 30(25), 4094–4103 (2009)CrossRefGoogle Scholar
  35. 27.35.
    J. Zhaoa, W. Hana, H. Chena, M. Tua, R. Zenga, Y. Shic, Z. Chab, C. Zhou: Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique, Carbohydr. Polym. 83(4), 1541–1546 (2011)CrossRefGoogle Scholar
  36. 27.36.
    D.F. Mosher, R.B. Johnson: In vitro formation of disulfide-bonded fibronectin multimers, J. Biol. Chem. 258(10), 6595–6601 (1983)Google Scholar
  37. 27.37.
    K. Sakai, T. Fujii, T. Hayashi: Cell-free formation of disulfide-bonded multimer from isolated plasma fibronectin in the presence of a low concentration of SH reagent under a physiological condition, J. Biochem. 115(3), 415–421 (1994)Google Scholar
  38. 27.38.
    W.C. Little, M.L. Smith, U. Ebneter, V. Vogel: Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage, Matrix Biol. 25(7), 451–461 (2008)CrossRefGoogle Scholar
  39. 27.39.
    A.W. Feinberg, K.K. Parker: Surface-initiated assembly of protein nanofabrics, Nano Lett. 6, 2184–2191 (2010)CrossRefGoogle Scholar
  40. 27.40.
    C.A. Hauser, S. Zhang: Designer self-assembling peptide nanofiber biological materials, Chem. Soc. Rev. 39(8), 2780–2790 (2010)CrossRefGoogle Scholar
  41. 27.41.
    N. Higashi, T. Koga: Self-assembled peptide nanofibers, Adv. Polym. Sci. 219, 27–68 (2008)Google Scholar
  42. 27.42.
    F. Gelain: Novel opportunities and challenges offered by nanobiomaterials in tissue engineering, Int. J. Nanomed. 3(4), 415–424 (2008)CrossRefGoogle Scholar
  43. 27.43.
    J.M. Holzwarth, P.X. Ma: 3D nanofibrous scaffolds for tissue engineering, J. Mater. Chem. 21(28), 10243–10251 (2011)CrossRefGoogle Scholar
  44. 27.44.
    R. Vasita, D.S. Katti: Nanofibers and their applications in tissue engineering, Int. J. Nanomed. 1(1), 15–30 (2006)CrossRefGoogle Scholar
  45. 27.45.
    H.A. Behanna, J.J. Donners, A.C. Gordon, S.I. Stupp: Coassembly of amphiphiles with opposite peptide polarities into nanofibers, J. Am. Chem. Soc. 127(4), 1193–2000 (2005)CrossRefGoogle Scholar
  46. 27.46.
    G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp: Selective differentiation of neural progenitor cells by high-epitope density nanofibers, Science 303(5662), 1352–1355 (2004)CrossRefGoogle Scholar
  47. 27.47.
    S.E. Paramonov, H.W. Jun, J.D. Hartgerink: Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing, J. Am. Chem. Soc. 128(22), 7291–7298 (2006)CrossRefGoogle Scholar
  48. 27.48.
    K.L. Niece, J.D. Hartgerink, J.J. Donners, S.I. Stupp: Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction, J. Am. Chem. Soc. 125(24), 7146–7147 (2003)CrossRefGoogle Scholar
  49. 27.49.
    J.D. Hartgerink, E. Beniash, S.I. Stupp: Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials, Proc. Natl. Acad. Sci. USA 99(8), 5133–5138 (2002)CrossRefGoogle Scholar
  50. 27.50.
    P. Hartgerink, D.P. Fessell, J.A. Jacobson, M.T. van Holsbeeck: Full- versus partial-thickness Achilles tendon tears: Sonographic accuracy and characterization in 26 cases with surgical correlation, Radiology 220(2), 406–412 (2001)Google Scholar
  51. 27.51.
    Y.S. Dagdas, A. Tombuloglu, A.B. Tekinay, A. Dana, M.O. Guler: Interfiber interactions alter the stiffness of gels formed by supramolecular self-assembled nanofibers, Soft Matter 7, 3524–3532 (2011)CrossRefGoogle Scholar
  52. 27.52.
    H.A. Lashuel, S.R. LaBrenz, L. Woo, L.C. Serpell, J.W. Kelly: Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly: Implications for amyloid fibril formation and materials science, J. Am. Chem. Soc. 122(22), 5262–5277 (2000)CrossRefGoogle Scholar
  53. 27.53.
    S. Patel, K. Kurpinski, R. Quigley, H. Gao, B.S. Hsiao, M.M. Poo, S. Li: Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance, Nano Lett. 7(7), 2122–2128 (2007)CrossRefGoogle Scholar
  54. 27.54.
    L.A. Smith, P.X. Ma: Nano-fibrous scaffolds for tissue engineering, Colloids Surf. B 39(3), 125–131 (2004)CrossRefGoogle Scholar
  55. 27.55.
    W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko: Electrospun nanofibrous structure: A novel scaffold for tissue engineering, J. Biomed. Mater. Res. A 60(4), 613–621 (2002)CrossRefGoogle Scholar
  56. 27.56.
    H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials 24(12), 2077–2082 (2003)CrossRefGoogle Scholar
  57. 27.57.
    J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin: Electrospinning of collagen nanofibers, Biomacromolecules 3(2), 232–238 (2002)CrossRefGoogle Scholar
  58. 27.58.
    A. Di Martino, M. Sittinger, M.V. Risbud: Chitosan: A versatile biopolymer for orthopaedic tissue-engineering, Biomaterials 26(30), 5983–5990 (2005)CrossRefGoogle Scholar
  59. 27.59.
    O.H. Kwon, I.S. Lee, Y.G. Ko, W. Meng, K.H. Jung, I.K. Kang, Y. Ito: Electrospinning of microbial polyester for cell culture, Biomed. Mater. 2(1), S52–S58 (2007)CrossRefGoogle Scholar
  60. 27.60.
    B. Duan, L. Wu, X. Yuan, Z. Hu, X. Li, Y. Zhang, K. Yao, M. Wang: Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array, J. Biomed. Mater. Res. A 83A(3), 868–878 (2007)CrossRefGoogle Scholar
  61. 27.61.
    A. Cooper, S. Jana, N. Bhattarai, M. Zhang: Aligned chitosan-based nanofibers for enhanced myogenesis, J. Mater. Chem. 20(40), 8904–8911 (2010)CrossRefGoogle Scholar
  62. 27.62.
    W. Ji, Y. Sun, F. Yang, J.J. van den Beucken, M. Fan, Z. Chen, J.A. Jansen: Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications, Pharm. Res. 28(6), 1259–1272 (2011)CrossRefGoogle Scholar
  63. 27.63.
    D.A. Stout, B. Basu, T.J. Webster: Poly(lactic-co-glycolic acid): Carbon nanofiber composites for myocardial tissue engineering applications, Acta Biomater. 7(8), 3101–3112 (2011)CrossRefGoogle Scholar
  64. 27.64.
    J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt: Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications, Biomaterials 30(26), 4325–4335 (2009)CrossRefGoogle Scholar
  65. 27.65.
    L. Li, H. Li, Y. Qian, X. Li, G.K. Singh, L. Zhong, W. Liu, Y. Lv, K. Cai, L. Yang: Electrospun poly (ε-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release, Int. J. Biol. Macromol. 49(2), 223–232 (2011)CrossRefGoogle Scholar
  66. 27.66.
    H. Chen, X. Fan, J. Xia, P. Chen, X. Zhou, J. Huang, J. Yu, P. Gu: Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering, Int. J. Nanomed. 6, 453–461 (2011)Google Scholar
  67. 27.67.
    M. Gizdavic-Nikolaidis, S. Ray, J.R. Bennett, A.J. Easteal, R.P. Cooney: Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering, Macromol. Biosci. 10(12), 1424–1431 (2010)CrossRefGoogle Scholar
  68. 27.68.
    Q. Su, A. Zhao, H. Peng, S. Zhou: Preparation and characterization of biodegradable electrospun polyanhydride nano/microfibers, J. Nanosci. Nanotechnol. 10(10), 6369–6375 (2010)CrossRefGoogle Scholar
  69. 27.69.
    K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.S. Seo, B.S. Hsiao, B. Chu, M. Hadjiargyrou: Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications, Biomaterials 24(27), 4977–4985 (2003)CrossRefGoogle Scholar
  70. 27.70.
    E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Pawlowski, G.L. Bowlin: Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning, J. Macromolec. Sci. A 38(12), 1231–1243 (2001)CrossRefGoogle Scholar
  71. 27.71.
    D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin: Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters, J. Biomed. Mater. Res. B 70(2), 286–296 (2004)CrossRefGoogle Scholar
  72. 27.72.
    Y. Zhang, H. Ouyang, C.T. Lim, S. Ramakrishna, Z.M. Huang: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, J. Biomed. Mater. Res. B 72(1), 156–165 (2005)CrossRefGoogle Scholar
  73. 27.73.
    B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, W.H. Park: Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro, Biomaterials 25(7/8), 1289–1297 (2004)CrossRefGoogle Scholar
  74. 27.74.
    Y.Z. Zhang, J. Venugopal, Z.M. Huang, C.T. Lim, S. Ramakrishna: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts, Biomacromolecules 6(5), 2583–2589 (2005)CrossRefGoogle Scholar
  75. 27.75.
    G. Chan, D.J. Mooney: New materials for tissue engineering: Towards greater control over the biological response, Trends Biotechnol. 26(7), 382–392 (2008)CrossRefGoogle Scholar
  76. 27.76.
    M. Gümüşderelioğlu, S. Dalkıranoğlu, R.S. Aydın, S. Cakmak: A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix, J. Biomed. Mater. Res. A 98A(3), 461–472 (2011)CrossRefGoogle Scholar
  77. 27.77.
    Z.X. Meng, W. Zheng, L. Li, Y.F. Zheng: Fabrication and characterization of three-dimensional nanofiber membrane of PCL-MWCNTs by electrospinning, Mater. Sci. Eng. C 30(7), 1014–1021 (2010)CrossRefGoogle Scholar
  78. 27.78.
    Y. Orlova, N. Magome, L. Liu, Y. Chen, K. Agladze: Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue, Biomaterials 32, 5615–5624 (2011)CrossRefGoogle Scholar
  79. 27.79.
    J.W. Lichtman, J.A. Conchello: Fluorescence microscopy, Nat. Methods 2(12), 910–919 (2005)CrossRefGoogle Scholar
  80. 27.80.
    S.W. Paddock: Principles and practices of laser scanning confocal microscopy, Mol. Biotechnol. 16(2), 127–149 (2000)CrossRefGoogle Scholar
  81. 27.81.
    C. Cremer: Optics far beyond the diffraction limit. In: Springer Handbook of Lasers and Optics, 2nd edn., ed. by F. Träger (Springer, Berlin, Heidelberg 2012) pp. 1359–1397, Chap. 20CrossRefGoogle Scholar
  82. 27.82.
    C.D. Keating, S.P. Mulvaney: Raman spectroscopy, Anal. Chem. 72(12), 145r–157r (2000)CrossRefGoogle Scholar
  83. 27.83.
    J.J. Santiago-Aviles, Y. Wang, S. Serrano: Raman characterization of carbon nanofibers prepared using electrospinning, Synth. Met. 138(3), 423–427 (2003)CrossRefGoogle Scholar
  84. 27.84.
    R. Nirmala, K.T. Nam, R. Navamathavan, S.J. Park, H.Y. Kim: Hydroxyapatite mineralization on the calcium chloride blended polyurethane nanofiber via biomimetic method, Nanoscale Res. Lett. 6(1), 2 (2010)Google Scholar
  85. 27.85.
    X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu: Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer 43(16), 4403–4412 (2002)CrossRefGoogle Scholar
  86. 27.86.
    Z.L. Wang: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, J. Phys. Chem. B 104(6), 1153–1175 (2000)CrossRefGoogle Scholar
  87. 27.87.
    R. Chen, C. Huang, Q. Ke, C. He, H. Wang, X. Mo: Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications, Colloids Surf. B 79(2), 315–325 (2010)CrossRefGoogle Scholar
  88. 27.88.
    M. Xing, W. Zhong, X. Xu, D. Thomson: Adhesion force studies of nanofibers and nanoparticles, Langmuir 26(14), 11809–11814 (2010)CrossRefGoogle Scholar
  89. 27.89.
    E.P.S. Tan, C.T. Lim: Mechanical characterization of nanofibers- A review, Composit. Sci. Technol. 66, 1102–1111 (2005)CrossRefGoogle Scholar
  90. 27.90.
    K.C. Neuman, T. Lionnet, J.-F. Alleman: Single-molecule micromanipulation techniques, Annu. Rev. Mater. Res. 37, 33–67 (2007)CrossRefGoogle Scholar
  91. 27.91.
    C.R. Carlisle, C. Coulais, M. Guthold: The mechanical stress–strain properties of single electrospun collagen type I nanofibers, Acta Biomater. 6(8), 2997–3003 (2010)CrossRefGoogle Scholar
  92. 27.92.
    A. Ishijima, H. Kojima, H. Higuchi, Y. Harada, T. Funatsu, T. Yanagida: Multiple- and single-molecule analysis of the actomyosin motor by nanometer piconewton manipulation with a microneedle: Unitary steps and forces, Biophys. J. 70(1), 383–400 (1996)CrossRefGoogle Scholar
  93. 27.93.
    R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans: Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy, Nature 397(6714), 50–53 (1999)CrossRefGoogle Scholar
  94. 27.94.
    C. Veigel, C.F. Schmidt: Moving into the cell: Single-molecule studies of molecular motors in complex environments, Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011)CrossRefGoogle Scholar
  95. 27.95.
    K.C. Neuman, A. Nagy: Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Meth. 5(6), 491–505 (2008)CrossRefGoogle Scholar
  96. 27.96.
    G.E. Park, T.J. Webster: A review of nanotechnology for the development of better orthopedic implants, J. Biomed. Nanotechnol. 1(1), 18–29 (2005)CrossRefGoogle Scholar
  97. 27.97.
    Z.G. Zhang, Z.H. Li, X.Z. Mao, W.C. Wang: Advances in bone repair with nanobiomaterials: Mini-review, Cytotechnology 63(5), 437–443 (2011)CrossRefGoogle Scholar
  98. 27.98.
    R. James, M. Deng, C.T. Laurencin, S.G. Kumbar: Nanocomposites and bone regeneration, Frontiers Mater. Sci. 5(4), 342–357 (2011)CrossRefGoogle Scholar
  99. 27.99.
    M. Keeney, J.H. Lai, F. Yang: Recent progress in cartilage tissue engineering, Curr. Opin. Biotechnol. 22(5), 734–740 (2011)CrossRefGoogle Scholar
  100. 27.100.
    J.P. Beier, D. Klumpp, M. Rudisile, R. Dersch, J.H. Wendorff, O. Bleiziffer, A. Arkudas, E. Polykandriotis, R.E. Horch, U. Kneser: Collagen matrices from sponge to nano: New perspectives for tissue engineering of skeletal muscle, BMC Biotechnol. 9, 34 (2009)CrossRefGoogle Scholar
  101. 27.101.
    V.L. Roger, A.S. Go, D.M. Lloyd-Jones, R.J. Adams, J.D. Berry, T.M. Brown, M.R. Carnethon, S. Dai, G. de Simone, E.S. Ford, C.S. Fox, H.J. Fullerton, C. Gillespie, K.J. Greenlund, S.M. Hailpern, J.A. Heit, P.M. Ho, V.J. Howard, B.M. Kissela, S.J. Kittner, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, D.M. Makuc, G.M. Marcus, A. Marelli, D.B. Matchar, M.M. McDermott, J.B. Meigs, C.S. Moy, D. Mozaffarian, M.E. Mussolino, G. Nichol, N.P. Paynter, W.D. Rosamond, P.D. Sorlie, R.S. Stafford, T.N. Turan, M.B. Turner, N.D. Wong, J. Wylie-Rosett, American Heart Association Statistics Committee, Stroke Statistics Subcommittee: Heart disease and stroke statistics-2011 update, Circulation 123, e18–e209 (2011)CrossRefGoogle Scholar
  102. 27.102.
    D. Kai, M.P. Prabhakaran, G. Jin, S. Ramakrishna: Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of biomedical materials research, Appl. Biomater. B 98, 379–386 (2011)CrossRefGoogle Scholar
  103. 27.103.
    D. Li, Y. Wang, Y. Xia: Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Lett. 3, 1167–1171 (2003)CrossRefGoogle Scholar
  104. 27.104.
    G.C. Engelmayr Jr., M. Cheng, C.J. Bettinger, J.T. Borenstein, R. Langer, L.E. Freed: Accordion-like honeycombs for tissue engineering of cardiac anisotropy, Nat. Mater. 7, 1003–1010 (2008)CrossRefGoogle Scholar
  105. 27.105.
    I.J. Legrice, P.J. Hunter, B.H. Smaill: Laminar structure of the heart: A mathematical model, Am. J. Physiol. 272, H2466–H2476 (1997)Google Scholar
  106. 27.106.
    R.J. Young, A.V. Panfilov: Anisotropy of wave propagation in the heart can be modeled by a Riemannian electrophysiological metric, Proc. Natl. Acad. Sci. 107, 15063–15068 (2010)CrossRefGoogle Scholar
  107. 27.107.
    E. Fernandes, V. Zucolotto, A. De Queiroz: Electrospinning of hyperbranched poly-L-lysine/polyaniline nanofibers for application in cardiac tissue engineering, J. Macromolec. Sci. A 47, 1203–1207 (2010)CrossRefGoogle Scholar
  108. 27.108.
    A. Borriello, V. Guarino, L. Schiavo, M.A. Alvarez-Perez, L. Ambrosio: Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle, J. Mater. Sci. Mater. Med. 22, 1053–1062 (2011)CrossRefGoogle Scholar
  109. 27.109.
    H.D. Guo, G.H. Cui, H.J. Wang, Y.Z. Tan: Transplantation of marrow-derived cardiac stem cells carried in designer self-assembling peptide nanofibers improves cardiac function after myocardial infarction, Biochem. Biophys. Res. Commun. 399, 42–48 (2010)CrossRefGoogle Scholar
  110. 27.110.
    H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, N. Kawaguchi: Micro and nano-scale in vitro 3D culture system for cardiac stem cells, J. Biomed. Mater. Res. A 94, 1–8 (2010)CrossRefGoogle Scholar
  111. 27.111.
    O. Ishii, M. Shin, T. Sueda, J.P. Vacanti: In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography, J. Thorac. Cardiovasc. Surg. 130, 1358–1363 (2005)CrossRefGoogle Scholar
  112. 27.112.
    N. Ashammakhi, A. Ndreu, Y. Yang, H. Ylikauppila, L. Nikkola: Nanofiber-based scaffolds for tissue engineering, Eur. J. Plast. Surg. 35, 135–149 (2012)CrossRefGoogle Scholar
  113. 27.113.
    X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna: Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials 25, 1883–1890 (2004)CrossRefGoogle Scholar
  114. 27.114.
    D.A. Narmoneva, R. Vukmirovic, M.E. Davis, R.D. Kamm, R.T. Lee: Endothelial cells promote cardiac myocyte survival and spatial reorganization: Implications for cardiac regeneration, Circulation 110, 962–968 (2004)CrossRefGoogle Scholar
  115. 27.115.
    C.A. Edwardo, P. Petrosko, T.O. Acarturk, P.A. DiMilla, W.A. LaFramboise, P.C. Johnson: Muscle tissue engineering, Clin. Plast. Surg. 26(4), 647–656 (1999)Google Scholar
  116. 27.116.
    A. Cooper, S. Jana, N. Bhattarai, M.Q. Zhang: Aligned chitosan-based nanofibers for enhanced myogenesis, J. Mater. Chem. 20(40), 8904–8911 (2010)CrossRefGoogle Scholar
  117. 27.117.
    L.S. Wray, E.J. Orwin: Recreating the microenvironment of the native cornea for tissue engineering applications, Tissue Eng. A 15(7), 1463–1472 (2009)CrossRefGoogle Scholar
  118. 27.118.
    Y. Komai, T. Ushiki: The three-dimensional organization of collagen fibrils in the human cornea and sclera, Invest. Ophthalmol. Vis. Sci. 32(8), 2244–2258 (1991)Google Scholar
  119. 27.119.
    K.M. Meek, C. Boote: The organization of collagen in the corneal stroma, Exp. Eye Res. 78(3), 503–512 (2004)CrossRefGoogle Scholar
  120. 27.120.
    J.V. Jester, W.M. Petroll, P.A. Barry, H.D. Cavanagh: Expression of alpha-smooth muscle (alpha-SM) actin during corneal stromal wound healing, Invest. Ophthalmol. Vis. Sci. 36(5), 809–819 (1995)Google Scholar
  121. 27.121.
    D. Phu, L.S. Wray, R.V. Warren, R.C. Haskell, E.J. Orwin: Effect of substrate composition and alignment on corneal cell phenotype, Tissue Eng. A 17(5/6), 799–807 (2011)CrossRefGoogle Scholar
  122. 27.122.
    A. Zajicova, K. Pokorna, A. Lencova, M. Krulova, E. Svobodova, S. Kubinova, E. Sykova, M. Pradny, J. Michalek, J. Svobodova, M. Munzarova, V. Holan: Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds, Cell Transplant. 19(10), 1281–1290 (2010)CrossRefGoogle Scholar
  123. 27.123.
    H. Bakhshandeh, M. Soleimani, S.S. Hosseini, H. Hashemi, I. Shabani, A. Shafiee, A.H. Nejad, M. Erfan, R. Dinarvand, F. Atyabi: Poly (varepsilon-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea, Int. J. Nanomed. 6, 1509–1515 (2011)Google Scholar
  124. 27.124.
    F. Yang, R. Murugan, S. Wang, S. Ramakrishna: Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials 26(15), 2603–2610 (2005)CrossRefGoogle Scholar
  125. 27.125.
    H.S. Koh, T. Yong, C.K. Chan, S. Ramakrishna: Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin, Biomaterials 29(26), 3574–3582 (2008)CrossRefGoogle Scholar
  126. 27.126.
    M.K. Horne, D.R. Nisbet, J.S. Forsythe, C.L. Parish: Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells, Stem Cell. Dev. 19(6), 843–852 (2010)CrossRefGoogle Scholar
  127. 27.127.
    Y. Zhu, A. Wang, S. Patel, K. Kurpinski, E. Diao, X. Bao, G. Kwong, W.L. Young, S. Li: Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration, Tissue Eng. C 17(7), 705–715 (2011)CrossRefGoogle Scholar
  128. 27.128.
    J. Xie, M.R. Macewan, S.M. Willerth, X. Li, D.W. Moran, S.E. Sakiyama-Elbert, Y. Xia: Conductive core-sheath nanofibers and their potential application in neural tissue engineering, Adv. Funct. Mater. 19(14), 2312–2318 (2009)CrossRefGoogle Scholar
  129. 27.129.
    L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna: Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering, J. Tissue Eng. Regen. Med. 5(4), e17–e35 (2011)CrossRefGoogle Scholar
  130. 27.130.
    M. Li, Y. Guo, Y. Wei, A.G. MacDiarmid, P.I. Lelkes: Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials 27(13), 2705–2715 (2006)CrossRefGoogle Scholar
  131. 27.131.
    Y. Guo, M. Li, A. Mylonakis, J. Han, A.G. MacDiarmid, X. Chen, P.I. Lelkes, Y. Wei: Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications, Biomacromolecules 8(10), 3025–3034 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2013

Authors and Affiliations

  1. 1.Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.School of Biological Science and Medical EngineeringBeihang University (BUAA)BeijingChina
  3. 3.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  5. 5.Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  6. 6.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations