Skip to main content

Zeolites

  • Chapter
  • 13k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Zeolites are natural materials that have surrounded us since the beginnings of the history of mankind. They may have been used by ancient man instinctively; however, their use is only documented from about the middle of the 18th century. They became the wonder materials of the 20th century, and remain so in our time as well. Their secret lies in their porous structure, the wide variety of their three-dimensional channel system, and the diversity of their pore size, reaching nanometer dimensions. Their synthesized varieties have many applications, as described in this chapter, but perhaps the most important is their use as catalysts. Indeed, their use in acid-catalyzed isomerization of straight-chain hydrocarbons to produce high-octane gasoline has shaped our world and generated much wealth. However, this is not their only catalytic application; their tunable structural features and the constrained environment they provide allow their use in catalysis of many types of reactions, tremendously influencing the selectivities of transformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

AAS:

atomic absorption spectroscopy

AFM:

atomic force microscopy

Acac:

acetylacetone

AlPO:

aluminophosphate

CO:

cuboctahedron

COSY:

correlation spectroscopy

D4R:

double four ring

DQ:

double quantum

EDTA:

ethylenediaminetetraacetic acid

EPR:

electron paramagnetic resonance

ElAP(S)O:

element aluminophosphosilicate

FABMS:

fast atom bombardment mass spectroscopy

HF:

hydrofluoric acid

HREM:

high-resolution electron microscopy

ICP:

inductively coupled plasma

IR:

infrared

IZA:

International Zeolite Association

LPM:

large-pore mordenite

LTA:

Linde type A

MAPO:

metalaluminophosphate

MAPSO:

metalaluminophosphosilicates

MAS:

magic angle spinning

MFI:

melt–flow index

NMR:

nuclear magnetic resonance

PFG:

pulsed-field-gradient

RF:

radio frequency

SAPO:

silicoaluminophosphate

SBU:

secondary building unit

SEM:

scanning electron microscopy

SIMS:

secondary-ion mass spectrometry

SP:

surface plasmon

SPM:

small-pore mordenite

TEM:

transmission electron microscopy

TO:

truncated octahedron

TPA:

tetrapropylammonium

TPD:

temperature programmed desorption

UV:

ultraviolet

XPS:

x-ray photoelectron spectroscopy

XRD:

x-ray diffraction

ZLC:

zero-length-column

ZSM:

zeolite sieve of molecular porosity

References

  1. X.S. Zhao, G.Q.M. Lu, G.J. Millar: Advances in mesoporous molecular sieve MCM-41, Ind. Eng. Chem. Res. 35, 2075–2090 (1996)

    CAS  Google Scholar 

  2. A. Dyer: An Introduction to Zeolite Molecular Sieves (Wiley, Chichester 1988)

    Google Scholar 

  3. W.M. Meier, D.H. Olson: Atlas of Zeolite Structure Types, 4th edn., ed. by Structure Commission of the International Zeolite Association (Elsevier, London 1996) p. 5

    Google Scholar 

  4. D.W. Breck: Zeolite Molecular Sieves, Structure, Chemistry, Use (Wiley, New York 1974)

    Google Scholar 

  5. D. Barthomeuf: Vers la maîtrise des zéolithes en adsorption et en catalyse (Towards the improvement of performance of zeolites as adsorbents and catalysts), Inform. Chim. 295, 227–230 (1988)

    CAS  Google Scholar 

  6. D.M. Ruthven: Zeolites as selective sorbents, Chem. Eng. Prog. 84, 42–50 (1988)

    CAS  Google Scholar 

  7. H. Nakamoto, H. Takahashi: Crystal symmetry change of ZSM-5 by various treatments, Chem. Lett., 1013–1016 (1981)

    Google Scholar 

  8. G. Debras, A. Gourgue, J.B. Nagy, G. de Clippelier: Physico-chemical characterization of pentasil type materials. IV. Thermal and steam stability, dealumination and aluminum exchange, Zeolites 6, 241–248 (1986)

    CAS  Google Scholar 

  9. J.M. Newsam: The structural chemistry of zeolites as viewed by powder neutron-diffraction, Physica B/C 136, 213–217 (1986)

    CAS  Google Scholar 

  10. W.M. Meier, FNRS Contact Group on Catalysis, Clays and Zeolites: Molecular sieves and clays: Materials by design, Katholieke Universiteit Leuven, Belgium (1990), oral presentation

    Google Scholar 

  11. M.E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowder: A molecular sieve with 18-membered rings, Nature 331, 698–699 (1988)

    CAS  Google Scholar 

  12. R.M. Dessau, J.L. Schlenker, J.B. Higgins: Framework topology of AIPO4-8: The first 14-ring molecular sieve, Zeolites 10, 522–524 (1990)

    CAS  Google Scholar 

  13. M. Estermann, L.B. Mccusker, C. Baerlocher, A. Merrouche, H. Kessler: A synthetic gallophosphate molecular-sieve with a 20-tetrahedral-atom pore opening, Nature 352, 320–323 (1991)

    CAS  Google Scholar 

  14. J.S. Beck, C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker: A new family of mesoporous molecular-sieves prepared with liquid-crystal templates, J. Am. Chem. Soc. 114, 10834–10843 (1992)

    CAS  Google Scholar 

  15. O.C. Gobin, S.J. Reitmeier, A. Jentys, J.A. Lercher: Diffusion pathways of benzene, toluene and p-xylene in MFI, Micropor. Mesopor. Mater. 125, 3–10 (2009)

    CAS  Google Scholar 

  16. R.M. Barrer: Syntheses and reactions of mordenite, J. Chem. Soc., 2158–2163 (1948)

    Google Scholar 

  17. L.B. Sand: Molecular Sieves (Society of Chemical Industry, London 1967) p. 71

    Google Scholar 

  18. N.Y. Chen, W.E. Garwood, F.G. Dwyer: Shape Selective Catalysis in Industrial Applications (Marcel Dekker Inc., New York 1989)

    Google Scholar 

  19. P.W. Tamm, D.H. Mohr, C.R. Wilson: Octane enhancement by selective reforming of light paraffins, Stud. Surf. Sci. Catal. 38, 335–353 (1988)

    Google Scholar 

  20. C.D. Chang: Hydrocarbons from methanol, Catal. Rev. Sci. Eng. 25, 1–118 (1983)

    CAS  Google Scholar 

  21. D.R. Lide (Ed.): CRC Handbook of Chemistry and Physics, 67th edn. (CRC Press, Boca Raton 1986)

    Google Scholar 

  22. R.M. Barrer, P.J. Denny: Hydrothermal chemistry of silicates. 9. Nitrogenous aluminosilicates, J. Chem. Soc., 971–982 (1961)

    Google Scholar 

  23. R.J. Argauer, G.R. Landolt: US Patent 3702886 (1972)

    Google Scholar 

  24. R.M. Barrer: Hydrothermal Chemistry of Zeolites (Academic Press, London 1982)

    Google Scholar 

  25. Z. Gabelica, J.B. Nagy, P. Bodart, G. Debras: High-resolution solid-state mas B-11-NMR evidence of boron incorporation in tetrahedral sites of zeolites, Chem. Lett., 1059–1062 (1984)

    Google Scholar 

  26. G. Perego, G. Belussi, C. Corno, M. Taramasso, F. Buonomo, A. Esposito: Titanium-silicalite: A novel derivative in the pentasil family, Stud. Surf. Sci. Catal. 28, 129–136 (1986)

    CAS  Google Scholar 

  27. B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen: Silicoaluminophosphate molecular-sieves – Another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc. 106, 6092–6093 (1984)

    CAS  Google Scholar 

  28. E.M. Flanigen, B.M. Lok, R.L. Patton, S.T. Wilson: Aluminophosphate molecular sieves and the periodic table, Stud. Surf. Sci. Catal. 28, 103–112 (1986)

    CAS  Google Scholar 

  29. E.M. Flanigen, R.L. Patton, S.T. Wilson: Structural, synthetic and physicochemical concepts in aluminophosphate-based molecular sieves, Stud. Surf. Sci. Catal. 37, 13–27 (1988)

    CAS  Google Scholar 

  30. W. Depmeier: Revised crystal data for the aluminate sodalite Ca8[Al12O24](WO4)2, J. Appl. Cryst. 12, 623–626 (1979)

    CAS  Google Scholar 

  31. Y. Chen, G. Zhu, Y. Peng, X. Yao, S. Qiu: Synthesis and characterization of (h0l) oriented high-silica zeolite beta membrane, Micropor. Mesopor. Mater. 124, 8–14 (2009)

    CAS  Google Scholar 

  32. F. Fan, Z. Feng, C. Li: UV-Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves, Chem. Soc. Rev. 39, 4794–4801 (2010)

    CAS  Google Scholar 

  33. E.G. Derouane, N. Dewaele, Z. Gabelica, J.B. Nagy: Physicochemical characterization of zeolite ZSM-20, Appl. Catal. 28, 285–293 (1986)

    CAS  Google Scholar 

  34. V. Fülöp, G. Borbely, H.K. Beyer, S. Ernst, J. Weitkamp: Physicochemical characterization and framework topology of zeolite ZSM-20, J. Chem. Soc. Faraday Trans. I 85, 2127–2139 (1989)

    Google Scholar 

  35. Z. Gabelica, N. Dewaele, L. Maistriau, J.B. Nagy, E.G. Derouane: Directing parameters in the synthesis of zeolites ZSM-20 and beta, ACS Symp. Ser. 398, 518–543 (1989)

    CAS  Google Scholar 

  36. J.A. Martens, P.A. Jacobs, S. Cartlidge: Investigation of the pore architecture of CSZ-1 zeolites with the decane test reaction, Zeolites 9, 423–427 (1989)

    CAS  Google Scholar 

  37. L. Maistriau, N. Dumont, J.B. Nagy, Z. Gabelica, E.G. Derouane: Single- and two-liquid-phase synthetic routes to sapo-37, Zeolites 10, 243–250 (1990)

    CAS  Google Scholar 

  38. D.E.W. Vaughan, M.G. Barrett: US Patent 4333859 (1982)

    Google Scholar 

  39. R.L. Wadlinger, G.T. Kerr, E.J. Rosinski: US Patent 3308069 (1967)

    Google Scholar 

  40. J.M. Newsam, M.M.J. Treacy, W.T. Koetsier, C.B. de Gruyter: Structural characterization of zeolite beta, Proc. Roy. Soc. Lond A 420, 375 (1988)

    CAS  Google Scholar 

  41. M.M.J. Treacy, J.M. Newsam: 2 new 3-dimensional 12-ring zeolite frameworks of which zeolite beta is a disordered intergrowth, Nature 332, 249–251 (1988)

    CAS  Google Scholar 

  42. J.B. Higgins, R.B. LaPierre, J.L. Schlenker, A.C. Rohrman, J.D. Wood, G.T. Kerr, W.J. Rohrbaugh: The framework topology of zeolite beta, Zeolites 8, 446–452 (1988)

    CAS  Google Scholar 

  43. J.B. Higgins, R.B. LaPierre, J.L. Schlenker, A.C. Rohrman, J.D. Wood, G.T. Kerr, W.J. Rohrbaugh: The framework topology of zeolite beta – a correction, Zeolites 9, 358 (1989)

    CAS  Google Scholar 

  44. D.E.W. Vaughan, K.G. Strohmaier: The influence of template size and geometry on faujasite crystallization, Stud. Surf. Sci. Catal. 28, 207–213 (1986)

    CAS  Google Scholar 

  45. M.E. Leonowicz, D.E.W. Vaughan: Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology, Nature 329, 819–821 (1987)

    CAS  Google Scholar 

  46. D.E.W. Vaughan, M.E. Leonowicz, K.G. Strohmaier: Characterization of the new zeolite ECR-1, ACS Symp. Ser. 411, 303–318 (1989)

    Google Scholar 

  47. M.E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowder: VPI-5: The first molecular sieve with pores larger than 10 Å, Zeolites 8, 362–366 (1988)

    CAS  Google Scholar 

  48. M.E. Davis, C. Montes, P.E. Hathaway, J.M. Garces: Synthesis of aluminophosphate and element-substituted aluminophosphate VPI-5, Stud. Surf. Sci. Catal. 49, 199–214 (1989)

    Google Scholar 

  49. E.G. Derouane, R. von Ballmoos: US Patent 4673559 (1987)

    Google Scholar 

  50. M.E. Davis, P.E. Hathaway, C. Montes: VPI-5, AlPO4-8, and MCM-9: Similarities and differences, Zeolites 9, 436–439 (1989)

    CAS  Google Scholar 

  51. S.T. Wilson, B.M. Lok, E.M. Flanigen: US Patent 4310440 (1982)

    Google Scholar 

  52. J.B. Parise: Preparation and structure of the aluminum ammonium phosphate dihydrate Al2[NH4](OH)(PO4)2 ⋅2H2O – A tunnel structure with ammonium-ions in the channels, Acta Cryst. C 40, 1641–1643 (1984)

    Google Scholar 

  53. R. Szostak, R. Kuvadia, J. Brown, T.L. Thomas: Ultralarge pore molecular sieves: Characterization of the 14 Å pore mineral, Cacoxenite, Stud. Surf. Sci. Catal. 49, 439–446 (1989)

    Google Scholar 

  54. J. Wang, S. Feng, R. Xu: Synthesis and characterization of a novel microporous alumino-borate, J. Chem. Soc. Chem. Commun., 265–266 (1989)

    Google Scholar 

  55. A. Cronstedt: Akad. Handl. Stockholm, 120 (1756)

    Google Scholar 

  56. D.W. Breck: Zeolite Molecular Sieves, Structure, Chemistry and Use (Wiley, New York 1974)

    Google Scholar 

  57. R.L. Hay: Geologic occurrence of zeolites and some associated minerals, Stud. Surf. Sci. Catal. 28, 35–40 (1986)

    CAS  Google Scholar 

  58. H. Eichhorn: über die Einwirkung verdünnter Salzlösungen auf Silicate, Pogg. Ann. Phys. Chem. 105, 126 (1858)

    Google Scholar 

  59. A. Damour: über das Bleigummi und thonerdhaltiges phosphorsaures Bleioxyd von Huelgoat, Ann. Mines 17, 191 (1840)

    Google Scholar 

  60. G. Friedel: Sur un nouveau silicate artificial, Bull. Soc. Franc. Mineral. Crystallogr. 19, 5–14 (1896)

    CAS  Google Scholar 

  61. F. Grandjean: An optic study of absorption of heavy vapours by certain zeolites, C. r. 149, 866–868 (1909)

    Google Scholar 

  62. J.W. McBain: The Sorption of Gases and Vapors by Solids (Routledge, London 1932)

    Google Scholar 

  63. R.M. Barrer: The sorption of polar and non-polar gases by zeolites, Proc. R. Soc. A 167, 392–420 (1938)

    Google Scholar 

  64. R.M. Milton: Molecular sieve adsorbents, US Patent 2882243 (1959)

    Google Scholar 

  65. D.W. Breck, W.G. Eversole, R.M. Milton, T.B. Reed, T.L. Thomas: Crystalline zeolites 1. The properties of a new synthetic zeolite, type-A, J. Am. Chem. Soc. 78, 5963–5971 (1956)

    CAS  Google Scholar 

  66. F.A. Mumpton: In: Natural Zeolites, Occurrence, Properties, Use, ed. by L.B. Sand, F.A. Mumpton (Pergamon, Oxford 1978) p. 3

    Google Scholar 

  67. H. Kristmannsdottir, J. Tomasson: In: Natural Zeolites, Occurrence, Properties, Use, ed. by L.B. Sand, F.A. Mumpton (Pergamon, Oxford 1978) p. 227

    Google Scholar 

  68. R.L. Hay: Zeolitic weathering of tuffs in Olduvai Gorge, Tanzania, Proc. 5th Int. Conf. Zeol. (1980) p. 155

    Google Scholar 

  69. A. Dyer: An Introduction to Zeolite Molecular Sieve (Wiley, Chichester 1988) p. 4

    Google Scholar 

  70. R.L. Hay: Silicate reaction in three lithofacies of a semiarid basin, Olduvai Gorge, Tanzania, Min. Soc. Am. Spec. Paper 3, 237–255 (1970)

    Google Scholar 

  71. M. Kastner: In: The Oceanic Lithosphere, ed. by C. Emiliani (Wiley, New York 1981) p. 915

    Google Scholar 

  72. M. Utada: Zeolitic zoning of the Neogene pyroclastic rocks in Japan, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 21, 189–221 (1971)

    Google Scholar 

  73. A. Jijima: In: Occurrence, Properties and Utilization of Natural Zeolites, ed. by D. Kalló, H.S. Sherry (Akadémiai Kiadó, Budapest 1988) p. 29

    Google Scholar 

  74. D.R. Corbin, B.F. Burgess, A.J. Vega Jr., R.D. Farlee: Comparison of analytical techniques for the determination of silicon and aluminum content in zeolites, Anal. Chem. 59, 2722–2728 (1987)

    CAS  Google Scholar 

  75. K.J. Chao, S.H. Chen, M.H. Yang: Simultaneous multielement analysis of zeolite catalysts by inductively-coupled plasma atomic emission-spectrometry, Fresen. Z. Anal. Chem. 331, 418–422 (1988)

    CAS  Google Scholar 

  76. G. Debras, E.G. Derouane, J.-P. Gilson, Z. Gabelica, G. Demortier: Prompt nuclear and atomic reactions for elemental analysis of zeolites I. A discussion of the experimental methods, Zeolites 3, 37–42 (1983)

    CAS  Google Scholar 

  77. J. Dwyer, F.R. Fitch, G. Quin, J.C. Vickerman: Study of the surface-composition of zeolites by fast atom bombardment mass-spectrometry, J. Phys. Chem. 86, 4574–4578 (1982)

    CAS  Google Scholar 

  78. Z. Gabelica, J.B. Nagy, E.G. Derouane, J.-P. Gilson: The use of combined thermal analysis to study crystallization, pore structure, catalytic activity and deactivation of synthetic zeolites, Clay Miner. 19, 803–824 (1984)

    CAS  Google Scholar 

  79. J.M. Bennett, R.M. Kirchner, S.T. Wilson: Synthesis and idealized topology of AIPO4-52, a new member of the ABC six-ring family, Stud. Surf. Sci. Catal. 49, 731–739 (1988)

    Google Scholar 

  80. J.M. Bennett: Determining the structure of molecular-sieve materials using high-resolution powder data, ACS Symp. Ser. 368, 162–176 (1988)

    CAS  Google Scholar 

  81. Z. Paiz, S.J. Andrews: Structure of the zeolite θ-1 – redetermination using single-crystal synchrotron-radiation data, Acta Cryst. C 46, 172–173 (1990)

    Google Scholar 

  82. N.A. Briscoe, D.W. Johnson, M.D. Shannon, G.T. Kokotailo, L.B. McCusker: The framework topology of zeolite EU-1, Zeolites 8, 74–76 (1988)

    CAS  Google Scholar 

  83. J.M. Newsam: Aluminum partitioning in zeolite-L, J. Chem. Soc. Chem. Commun., 123–124 (1987)

    Google Scholar 

  84. J.M. Thomas: Advances in the structural analysis of zeolites, zeolitic precursors and their analogues, Stud. Surf. Sci. Catal. 49, 3–28 (1989)

    Google Scholar 

  85. A.C. Rohrman, R.B. LaPierre Jr., J.L. Schlenker, J.D. Wood, E.W. Valyocsik, M.K. Rubin, J.B. Higgins, W.J. Rohrbaugh: The framework topology of ZSM-23: A high silica zeolite, Zeolites 5, 352–354 (1985)

    CAS  Google Scholar 

  86. O. Terasaki, J.M. Thomas, G.R. Millward, D. Watanabe: Role of high-resolution electron microscopy in the identification and characterization of new crystalline, microporous materials: "reading off" the structure and symmetry elements of pentasil molecular sieves, Chem. Mater. 1, 158–162 (1989)

    CAS  Google Scholar 

  87. M.M.J. Treacy, J.M. Newsam: 2 new 3-dimensional 12-ring zeolite frameworks of which zeolite beta is a disordered intergrowth, Nature 332, 249–251 (1988)

    CAS  Google Scholar 

  88. J.B. Nagy, E.G. Derouane: NMR spectroscopy and zeolite chemistry, ACS Symp. Ser. 368, 2–32 (1988)

    CAS  Google Scholar 

  89. J. Klinowski: Solid-state NMR studies of zeolite catalysts, Colloid. Surface. 36, 133–154 (1989)

    CAS  Google Scholar 

  90. S. Ramdas, J. Klinowski: A simple correlation between isotropic Si-29-NMR chemical shifts and T-O-T angles in zeolite frameworks, Nature 308, 521–523 (1984)

    CAS  Google Scholar 

  91. G. Engelhardt, R. Radeglia: A semiempirical quantumchemical rationalization of the correlation between Si–O–Si angles and Si-29 NMR chemical shifts of silica polymorphs and framework aluminosilicates (zeolites), Chem. Phys. Lett. 108, 271–274 (1984)

    CAS  Google Scholar 

  92. G. Engelhardt, S. Luger, J.C. Buhl, J. Felsche: Si-29 MAS NMR of aluminosilicate sodalites – correlations between chemical shifts and structure parameters, Zeolites 9, 182–186 (1989)

    CAS  Google Scholar 

  93. C.A. Fyfe, H. Gies, Y. Feng, G.T. Kokotailo: Determination of 3-dimensional lattice connectivities in zeolites using natural-abundance Si-29 two-dimensional NMR and the direct observation of Si-29-O-Si-29 couplings, Nature 341, 223–225 (1989)

    CAS  Google Scholar 

  94. C.A. Fyfe, H. Gies, G.T. Kokotailo, Y. Feng, H. Strobl, B. Marler, D.E. Cox: Multitechnique analysis of the lattice structures of highly siliceous zeolites, Stud. Surf. Sci. Catal. 49, 545–557 (1989)

    Google Scholar 

  95. J. Klinowski: Nuclear magnetic-resonance studies of zeolites, Prog. NMR Spectrosc. 16, 237–309 (1984)

    CAS  Google Scholar 

  96. J.W. Akitt: Multinuclear studies of aluminum compounds, Prog. NMR Spectrosc. 21, 1–149 (1989)

    Google Scholar 

  97. P. Bodart, J.B. Nagy, G. Debras, Z. Gabelica, P.A. Jacobs: Aluminum siting in mordenite and dealumination mechanism, J. Phys. Chem. 90, 5183–5190 (1986)

    CAS  Google Scholar 

  98. J.H. Raeder: Computer-aided interpretation of high-resolution 29Si NMR spectra of offretites, Zeolites 4, 311–314 (1984)

    CAS  Google Scholar 

  99. P. Bodart, J.B. Nagy, Z. Gabelica, E.G. Derouane: In: Occurrence, Properties and Utilization of Natural Zeolites, ed. by D. Kalló, H.S. Sherry (Akadémiai Kiadó, Budapest 1988) p. 245

    Google Scholar 

  100. H.K.C. Timken, N. Janes, G.L. Turner, S.L. Lambert, L.B. Welsh, E. Oldfield: Solid-state O-17 nuclear magnetic resonance spectroscopic studies of zeolites and related systems 2, J. Am. Chem. Soc. 108, 7236–7241 (1986)

    CAS  Google Scholar 

  101. Z. Gabelica, J.B. Nagy, P. Bodart, G. Debras: High-resolution solid-state mas B-11-NMR evidence of boron incorporation in tetrahedral sites of zeolites, Chem. Lett., 1059–1062 (1984)

    Google Scholar 

  102. C.S. Blackwell, R.L. Patton: Solid-state NMR of silicoaluminophosphate molecular-sieves and aluminophosphate materials, J. Phys. Chem. 92, 3965–3970 (1988)

    CAS  Google Scholar 

  103. C.R. Bayense, J.H.C. van Hooff, A.P.M. Kentgens, J.W. de Haan, L.J.M. van de Ven: The removal of gallium from the lattice of MFI-galosilicates as studied by 71Ga MAS NMR spectroscopy, J. Chem. Soc. Chem. Commun. 17, 1292–1293 (1989)

    Google Scholar 

  104. R.A. Schoonheydt: Combined ESR-DRS spectroscopies of transition-metal ions and metal-ion clusters in zeolites, J. Phys. Chem. Solids 50, 523–539 (1989)

    CAS  Google Scholar 

  105. R.A. Schoonheydt, I. Vaesen, H. Leeman: Electron spin resonance and diffuse reflectance spectroscopy of the reduction of Ni2+ with H-2 in zeolite X and zeolite Y, exchanged with La3+ and NH4+, J. Phys. Chem. 93, 1515–1521 (1989)

    CAS  Google Scholar 

  106. A.V. Kucherov, A.A. Slinkin: Introduction of transition metal ions in cationic positions of high-silica zeolites by a solid state reaction, Interaction of copper compounds with H-mordenite or H-ZSM-5, Zeolites 6, 175–180 (1986)

    CAS  Google Scholar 

  107. A.V. Kucherov, A.A. Slinkin: Introduction of Cr(V), Mo(V) and V(IV) ions in cationic positions of high-silica zeolites by a solid-state reaction, Zeolites 7, 38–42 (1987)

    CAS  Google Scholar 

  108. A.V. Kucherov, A.A. Slinkin: Co-introduction of transition metal ions into cationic positions of H-ZSM-5 by a solid-state reaction, Zeolites 7, 43–46 (1987)

    CAS  Google Scholar 

  109. A.V. Kucherov, A.A. Slinkin: Introduction Fe(III) ions in cationic positions of HZSM-5 by a solid-state reaction, Fe(III) cations in HZSM-5, and Fe(III) lattice ions in ferrisilicate, Zeolites 8, 110–116 (1988)

    CAS  Google Scholar 

  110. B. Wichterlova, S. Beran, S. Bednarova, K. Nedomova, L. Dudiova, P. Jiru: Solid state interactions of Mn or Fe cations with ZSM-5 zeolites, Stud. Surf. Sci. Catal. 37, 199–206 (1988)

    CAS  Google Scholar 

  111. B. Xu, L. Kevan: Formation of alkali metal particles in alkali metal cation exchanged X zeolite exposed to alkali metal vapor, control of metal particle identity, J. Phys. Chem. 96, 2642–2645 (1992)

    CAS  Google Scholar 

  112. B. Xu, L. Kevan: Formation of metal clusters in alkaline-earth cation-exchanged X zeolites, J. Phys. Chem. 96, 3647–3652 (1992)

    CAS  Google Scholar 

  113. M.W. Simon, J.C. Edwards, S.L. Suib: Characterization and catalytic studies on defect sites formed upon the thermal decomposition of sodium ionic clusters in NaX zeolite, J. Phys. Chem. 99, 4698–4709 (1995)

    CAS  Google Scholar 

  114. P.K. Dutta, K.M. Rao, J.Y. Park: Correlation of Raman spectra of zeolites with framework architecture, J. Phys. Chem. 95, 6654–6656 (1991)

    CAS  Google Scholar 

  115. E.M. Flanigen, H. Khatami, H.A. Szymanski: Infrared structural studies of zeolite frameworks, Adv. Chem. Ser. 101, 201 (1971)

    CAS  Google Scholar 

  116. H. Fichtner-Schmittler, U. Lohse, H. Miessner, H.-E. Maneck: Correlation between unit-cell parameter, skeletal stretching vibrations and molar fraction of aluminum of faujasite type zeolites for Si-Aal = 1.1–1,000, Z. Phys. Chem. Leipzig 271, 69–79 (1990)

    CAS  Google Scholar 

  117. M.D. Baker, G.A. Ozin, J. Godber: Direct probe Fourier-transform far infrared spectroscopy of metal atoms, metal ions, and metalclusters in zeolites, Catal. Rev. Sci. Eng. 27, 591–651 (1985)

    CAS  Google Scholar 

  118. G.A. Ozin, M.D. Baker, J. Godber, C.J. Gil: Intrazeolite site-selective far-IR cation probe, J. Phys. Chem. 93, 2899–2908 (1989)

    CAS  Google Scholar 

  119. R.A. Schoonheydt, H. van Brabant, J. Pelgrims: Chemistry of Rh(NH3)5Cl2+ on mordenite, Zeolites 4, 67–72 (1984)

    CAS  Google Scholar 

  120. G. Calis, P. Frenken, E. de Boer, A. Swolfs, M.A. Hefni: Synthesis and spectroscopic studies of Fe3+ substituted ZSM-5 zeolite, Zeolites 7, 319–326 (1987)

    CAS  Google Scholar 

  121. J.A. Rossin, C. Saldarriaga, M.E. Davis: Synthesis of cobalt containing ZSM-5, Zeolites 7, 295–300 (1987)

    CAS  Google Scholar 

  122. R. Szostak: Molecular Sieves, Principles of Synthesis and Identification (Van Nostrand Reinhold, New York 1989)

    Google Scholar 

  123. D. Grandjean, A.M. Beale, A.V. Petukhov, B.M. Weckhuysen: Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions, J. Am. Chem. Soc. 127, 14454–14465 (2005)

    CAS  Google Scholar 

  124. D.M. Bibby, M.P. Dale: Synthesis of silica-sodalite from non-aqueous systems, Nature 317, 157–158 (1985)

    CAS  Google Scholar 

  125. Mobil Oil Corporation: A porous crystalline material and a method of preparing same, Eur. Patent 0226674 (1985), US Patent 4568654 (1984)

    Google Scholar 

  126. Mobil Oil Corporation: A process for isomerizing xylenes, Eur. Patent 0102716 (1984)

    Google Scholar 

  127. Mobil Oil Corporation: Synthesis of zeolite ZSM-22 with a heterocyclic organic compound, Eur. Patent 0116203 (1987)

    Google Scholar 

  128. Mobil Oil Corporation: Crystalline zeolite and method of preparing same, US Patent 4016245 (1977)

    Google Scholar 

  129. Socony Mobil Oil Corporation: Synthetic zeolite and method for preparing the same, US Patent 3247195 (1966)

    Google Scholar 

  130. A. Nastro, L.B. Sand: Growth of larger crystals of ZSM-5 in the system 4(TPA)2O-38(NH4)2O-x(Li,Na,K)2 O-Al2O3-59SiO2-750H2O, Zeolites 3, 57–62 (1985)

    Google Scholar 

  131. A. Araya, B.M. Lowe: Synthesis and characterization of zeolite Nu-10, Zeolites 4, 280–286 (1984)

    CAS  Google Scholar 

  132. Z. Gabelica, N. Blom, E.G. Derouane: Synthesis and characterization of ZSM-5 type zeolites 3, A critical-evaluation of the role of alkali and ammonium cations, Appl. Catal. 5, 227–248 (1983)

    CAS  Google Scholar 

  133. K.P. Lillerud, J.H. Prader: On the synthesis of erionite – offretite intergrowth zeolites, Zeolites 6, 474–483 (1986)

    CAS  Google Scholar 

  134. C. Kosanović, K. Havancsák, B. Subotić, V. Svetličić, T. Mišić, Á. Cziráki, G. Huhn: A contribution to understanding the mechanism of crystallization of silicalite-1 in heterogeneous systems (hydrogels), Micropor. Mesopor. Mater. 123, 150–159 (2009)

    Google Scholar 

  135. Z. Gabelica, E.G. Derouane, N. Blom: Factors affecting the synthesis of pentasil zeolites, ACS Symp. Ser. 248, 219–251 (1984)

    CAS  Google Scholar 

  136. J.B. Nagy, Z. Gabelica, E.G. Derouane: Position and configuration of the guest organic molecules within the framework of the ZSM-5 and ZSM-11 zeolites, Zeolites 3, 43–49 (1983)

    CAS  Google Scholar 

  137. R.M. Barrer, J.A.W. Baynham, F.W. Bultitude, W.M. Meire: Hydrothermal chemistry of the silicates 8, Low-temperature crystal growth of aluminosilicates, and of some gallium and germainium analogues, J. Chem. Soc., 195–208 (1959)

    Google Scholar 

  138. J.B. Nagy, Z. Gabelica, E.G. Derouane, P.A. Jacobs: Molecular shape selectivity of ZSM-5, modified ZSM-5 and ZSM-11 type zeolites, Chem. Lett., 1105–1108 (1982)

    Google Scholar 

  139. P. Bodart, J.B. Nagy, Z. Gabelica, E.G. Derouane: Factors governing the synthesis of zeolites from silicoaluminate hydrogels - a comparative-study of the crystallization mechanisms of zeolitesY, mordenite and ZSM-5, J. Chim. Phys. Phys. Biol. 83, 777–790 (1986)

    CAS  Google Scholar 

  140. E.G. Derouane, E.W. Valyocsik, R.P. von Ballmoos: Eur. Patent 146384 (1984)

    Google Scholar 

  141. N. Dewaele, L. Maistriau, J.B. Nagy, Z. Gabelica, E.G. Derouane: Parameters affecting the optimal synthesis of zeolite ZSM-20, Appl. Catal. 37, 273–290 (1988)

    CAS  Google Scholar 

  142. H. Gerke, H. Gies: Studies on clathrasils 4, Crystal-structure of dodecasil-1H, a synthetic clathrate compound of silica, Z. Kristallogr. 166, 11–22 (1984)

    CAS  Google Scholar 

  143. L.D. Rollmann, E.W. Valyocsik: Manufacture of synthetic mordenite, US Patent 4205052 (1980)

    Google Scholar 

  144. J.L. Guth, H. Kessler, J.M. Hiegel, J.M. Lamblin, J. Patarin, A. Seive, J.M. Chezeau, R. Wey: Zeolite synthesis in the presence of fluoride ions – a comparison with conventional synthesis methods, ACS Symp. Ser. 398, 176–195 (1989)

    CAS  Google Scholar 

  145. Research Association for Petroleum Alternatives Development (RAPAD): Process for producing a crystalline silicate, Eur. Patent 0087017 (1983)

    Google Scholar 

  146. L.B. Sand: Zeolite synthesis and crystallization, Pure Appl. Chem. 52, 2105–2113 (1980)

    CAS  Google Scholar 

  147. T. Ito, J. Fraissard, J.B. Nagy, N. Dewaele, Z. Gabelica, A. Nastro, E.G. Derouane: 129Xe-NMR studies of type NaY, ZSM-5 and ZSM-20 zeolite crystallization, Stud. Surf. Sci. Catal. 49, 579–588 (1989)

    Google Scholar 

  148. E.G. Derouane, J.P. Gilson, Z. Gabelica, C. Mousty-Desbuquoit, J. Verbist: Concerning the aluminum distribution gradient in ZSM-5 zeolites, J. Catal. 71, 447–448 (1981)

    CAS  Google Scholar 

  149. W.A. van Erp, H.W. Kouwenhoven, J.M. Nanne: Zeolite synthesis in non-aqueous solvents, Zeolites 7, 286–288 (1987)

    Google Scholar 

  150. N. Herron: Zeolite catalysts as enzyme mimics, ACS Symp. Ser. 392, 141–154 (1989)

    CAS  Google Scholar 

  151. R.M. Barrer: Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic, London 1978)

    Google Scholar 

  152. J. Burgess: Metal Ions in Solution (Ellis Horwood, Chichester 1978)

    Google Scholar 

  153. R.M. Barrer, W.M. Meier: Exchange equilibria in a synthetic crystalline exchanger, Trans. Faraday Soc. 55, 130–141 (1959)

    CAS  Google Scholar 

  154. B.K.G. Theng, E.F. Vansant, J.B. Uytterhoeven: Ion exchange in synthetic zeolites I, Ammonium and some of its alkyl derivatives in Linde sieves X and Y, Trans. Faraday Soc. 64, 3370 (1968)

    CAS  Google Scholar 

  155. P. Chu, F.G. Dwyer: Organic ion exchange of ZSM-5 zeolite, Zeolites 8, 423–426 (1988)

    CAS  Google Scholar 

  156. H.K. Beyer, H.G. Karge, G. Borbély: Solid-state ion exchange in zeolites 1. Alkaline chlorides/ZSM-5, Zeolites 8, 79–82 (1988)

    CAS  Google Scholar 

  157. H.G. Karge: Post-synthesis modification of microporous materials by solid-state reactions, Stud. Surf. Sci. Catal. 105, 1901–1948 (1997)

    Google Scholar 

  158. M. Bülow, P. Lorenz: In: Fundamentals of Adsorption II, ed. by A. Liapus (Engineering Foundation, New York 1987) pp. 119–128

    Google Scholar 

  159. P. Graham, A.D. Hughes, L.V.C. Rees: In: Gas Separation Technology, ed. by E.F. Vansant, R. Dewolfs (Elsevier, Amsterdam 1990) p. 215

    Google Scholar 

  160. S. Liu, P. Zhang, X. Meng, D. Liang, N. Xiao, F.-S. Xiao: Cesium-free synthesis of aluminosilicate RHO zeolite in the presence of cationic polymer, Micropor. Mesopor. Mater. 132, 352–356 (2010)

    CAS  Google Scholar 

  161. E.G. Derouane, J.B. Nagy: Surface curvature effects on the NMR chemical shift for molecules trapped in microporous solids, Chem. Phys. Lett. 137, 341–344 (1987)

    CAS  Google Scholar 

  162. J. Fraissard, T. Ito: Xe-129 NMR study of adsorbed xenon – A new method for studying zeolites and metal-zeolites, Zeolites 8, 350–361 (1988)

    CAS  Google Scholar 

  163. M. Boudart, L.-C. de Ménorval, J. Fraissard, G.P. Valença: Study by xenon NMR of platinum particles supported on alumina, J. Phys. Chem. 92, 4033–4035 (1988)

    CAS  Google Scholar 

  164. J.B. Nagy: Multinuclear magnetic resonance in liquids and solids – Chemical applications, NATO ASI Ser. C 322, 371 (1990)

    CAS  Google Scholar 

  165. E.L. Wu, S.L. Lawton, D.H. Olson, A.C. Rohrman, G.T. Kokotailo: ZSM-5-type materials – factors affecting crystal symmetry, J. Phys. Chem. 83, 2777–2781 (1979)

    CAS  Google Scholar 

  166. C.A. Fyfe, H. Strobl, G.T. Kokotailo, G.J. Kennedy, G.E. Barlow: Ultra-high-resolution Si-29 solid-state MAS NMR investigation of sorbate and temperature-induced changes in the lattice structure of zeolite ZSM-5, J. Am. Chem. Soc. 110, 3373–3380 (1988)

    CAS  Google Scholar 

  167. D.R. Korbin, L. Abrams, G.A. Jones, M.M. Eddy, G.D. Stucky, D.E. Cox: Flexibility of the zeolite-RHO framework – neutron powder structural characterization of Ca-exchanged zeolite-rho, J. Chem. Soc. Chem. Commun., 42–43 (1989)

    Google Scholar 

  168. M.F.M. Post: Introduction to Zeolite Science and Practice (Elsevier, Amsterdam 1991) p. 392

    Google Scholar 

  169. P.B. Weisz: Zeolites – New horizons in catalysis, Chemtech. 3, 498–505 (1973)

    CAS  Google Scholar 

  170. D.M. Ruthven: Principles of Adsorption and Adsorption Processes (John Wiley, New York 1984)

    Google Scholar 

  171. J. Kärger, D.M. Ruthven: On the comparison between macroscopic and NMR measurements of intracrystalline diffusion in zeolites, Zeolites 9, 267–281 (1989)

    Google Scholar 

  172. N. Van-Den-Begin, L.V.C. Rees, J. Caro, M. Bülow: Fast adsorption-desorption kinetics of hydrocarbons in silicalite-1 by the single-step frequency response method, Zeolites 9, 287–292 (1989)

    CAS  Google Scholar 

  173. J. Kärger, H. Pfeifer: NMR self-diffusion studies in zeolite science and technology, Zeolites 7, 90–107 (1987)

    Google Scholar 

  174. E.C. de Lara, R. Kahn, F. Mezei: Determination of the intracrystalline diffusion-coefficient of methane in A-zeolites by means of neutron spin-echo experiments, J. Chem. Soc. Faraday Trans. I, 79, 1911–1920 (1983)

    Google Scholar 

  175. E.C. de Lara, R. Kahn: Physicochemical properties of zeolitic systems and their low dimensionality, NATO ASI Ser. B 221, 169 (1990)

    Google Scholar 

  176. P. Stilbs: Fourier transform pulsed-gradient spin-echo studies of molecular diffusion, Prog. NMR Spectrosc. 19, 1–45 (1987)

    CAS  Google Scholar 

  177. E.O. Stejskal, J.E. Tanner: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient, J. Chem. Phys. 42, 288 (1965)

    CAS  Google Scholar 

  178. R.L. Gorring: Diffusion of normal paraffins in zeolite T: Occurrence of window effect, J. Catal. 31, 13–26 (1973)

    CAS  Google Scholar 

  179. C. Chmelik, L. Heinke, J.M. van Baten, R. Krishna: Diffusion of n-butane/iso-butane mixtures in silicalite-1 investigated using infrared (IR) microscopy, Micropor. Mesopor. Mater. 125, 11–16 (2009)

    CAS  Google Scholar 

  180. P.A. Jacobs: Carboniogenic Activity of Zeolites (Elsevier, Amsterdam 1977)

    Google Scholar 

  181. P.A. Jacobs, H.K. Beyer: Evidence for the nature of true Lewis sites in faujasite-type zeolites, J. Phys. Chem. 83, 1174–1177 (1979)

    CAS  Google Scholar 

  182. H. Pfeifer, D. Freude, M. Hunger: Nuclear magnetic resonance studies on the acidity of zeolites and related catalysts, Zeolites 5, 274–286 (1985)

    CAS  Google Scholar 

  183. H. Ernst: Highly resolved proton magnetic resonance studies on the acidity of zeolites and related catalysts, Z. Phys. Chem. Leipzig 269, 1073–1094 (1988)

    CAS  Google Scholar 

  184. G. Engelhardt, D. Michel: High-Resolution Solid-State NMR of Silicates and Zeolites (Wiley, Chichester 1987)

    Google Scholar 

  185. J.B. Nagy, G. Engelhardt, D. Michel: High-resolution NMR on adsorbate-adsorbent systems, Adv. Colloid. Interface Sci. 23, 67–128 (1985)

    CAS  Google Scholar 

  186. J.N. Lunsford, W.P. Rothwell, W. Shen: Acid sites in zeolite Y – A solid-state NMR and infrared study using trimethylphosphine as a probe molecule, J. Am. Chem. Soc. 107, 1540–1547 (1985)

    CAS  Google Scholar 

  187. G. Engelhardt, H.-G. Jerschkewitz, U. Lohse, P. Saw, A. Samoson, E. Lippmaa: 500 MHz 1H-MAS NMR studies of dealuminated HZSM-5 zeolites, Zeolites 7, 289–292 (1987)

    CAS  Google Scholar 

  188. F. Haw, I.S. Chuang, B.L. Hawkins, G.E. Maciel: Surface titration of silica-alumina monitored by N-15 NMR with cross polarization and magic angle spinning, J. Am. Chem. Soc. 105, 7206–7207 (1983)

    CAS  Google Scholar 

  189. J.A. Ripmeester: Surface acid site characterization by means of CP/MAS N-15 NMR, J. Am. Chem. Soc. 105, 2925–2927 (1983)

    CAS  Google Scholar 

  190. V.M. Mastikhin, I.L. Mudrakovsky, S.V. Filimonova: Probing the Lewis acidity of heterogeneous catalysts by N-15 NMR of adsorbed N2O, Chem. Phys. Lett. 149, 175–179 (1988)

    CAS  Google Scholar 

  191. D. Barthomeuf: Conjugate acid-base pairs in zeolites, J. Phys. Chem. 88, 42–45 (1984)

    CAS  Google Scholar 

  192. S. Kaliaguine, J.B. Nagy, Z. Gabelica: Chemically modified ZSM-5 zeolites: Structure and catalytic properties, Stud. Surf. Sci. Catal. 35, 381–429 (1988)

    Google Scholar 

  193. R. Szostak: Modified zeolites, Stud. Surf. Sci. Catal. 58, 153–199 (1991)

    CAS  Google Scholar 

  194. J.C. Vedrine: Physicochemical properties of zeolitic systems and their low dimensionality, NATO ASI Ser. B 221, 121 (1990)

    CAS  Google Scholar 

  195. P.A. Jacobs (Ed.): Structure and Reactivity of Modified Zeolites (Elsevier, Amsterdam 1984)

    Google Scholar 

  196. R.M. Barrer, B. Coughlan: Molecular Sieves (Society Chemical Industry, London 1968) p. 141

    Google Scholar 

  197. J. Scherzer: The preparation and characterization of aluminum-deficient zeolites, ACS Symp. Ser. 248, 157–200 (1984)

    CAS  Google Scholar 

  198. I. Hannnus, I.I. Ivanova, G. Tasi, I. Kiricsi, J.B. Nagy: Investigation of the surface-reactions of CCl4 on zeolites studied by IR and MAS NMR spectroscopy, Colloid. Surf. A Physicochem. Eng. Asp. 101, 199–206 (1995)

    Google Scholar 

  199. I. Hannus, A. Fonseca, I. Kiricsi, J.B. Nagy, P. Fejes: 29Si and 27Al MAS NMR investigation of H-mordenite dealuminated with phosgene, Stud. Surf. Sci. Catal. 94, 155–162 (1995)

    CAS  Google Scholar 

  200. G. Engelhardt, V. Lohse, V. Patzelova, M. Magi, E. Lippmaa: High-resolution 29Si NMR of dealuminated Y-zeolites 1, The dependence of the extent of dealumination on the degree of ammonium exchange and the temperature and water vapour pressure of the thermochemical treatment, Zeolites 3, 233–238 (1983)

    CAS  Google Scholar 

  201. D.W. Breck, E.M. Flanigen: Molecular Sieves (Society Chemical Industry, London 1968) p. 47

    Google Scholar 

  202. Z. Yu, A. Zheng, Q. Wang, L. Chen, J. Xu, J.-P. Amoureux: Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced Al-27 DQ-MAS NMR spectroscopy at high field, Angew. Chem. Int. Edit. 49, 8657–8661 (2010)

    CAS  Google Scholar 

  203. E. Jacquinot, F. Raatz, A. Macedo, C. Marcilly: Evaluation of non-commercial modified large pore zeolites in FCC, Stud. Surf. Sci. Catal. 46, 115–125 (1988)

    Google Scholar 

  204. J. Lynch, F. Raatz, C. Delalande: Characterization of the secondary pore system in dealuminated HY zeolites comparison between isomorphous substitution and hydrothermal treatment, Stud. Surf. Sci. Catal. 39, 547–557 (1988)

    Google Scholar 

  205. J. Lynch, F. Raatz, P. Dufresne: Characterization of the textural properties of dealuminated HY forms, Zeolites 7, 333–340 (1987)

    CAS  Google Scholar 

  206. F. Raatz, C. Marcilly, E. Freund: Comparison between small pore and large pore mordenites, Zeolites 5, 329–333 (1985)

    CAS  Google Scholar 

  207. F. Raatz, E. Freund, C. Marcilly: Study of small-pore and large-pore mordenite modifications 1, Preparation of the HM forms, J. Chem. Soc. Faraday Trans. I 79, 2299–2309 (1983)

    CAS  Google Scholar 

  208. M. Tielen, M. Geelen, P.A. Jacobs: Proc. Int. Symp. Zeol. Catal., Siófok, Hungary (1985) p. 1

    Google Scholar 

  209. K.G. Ione, L.A. Vostrikova, V.M. Mastikhin: Synthesis of crystalline metal silicates having zeolite structure and study of their catalytic properties, J. Mol. Catal. 31, 355–370 (1985)

    CAS  Google Scholar 

  210. D.E.W. Vaughan: Zeolites and other microporous materials, Stud. Surf. Sci. Catal. 49, 95–116 (1989)

    Google Scholar 

  211. P. Fejes, I. Kiricsi, I. Hannus, A. Kiss, G. Schöbel: Novel method for the dealumination of zeolites, React. Kinet. Catal. Lett. 14, 481–488 (1980)

    CAS  Google Scholar 

  212. H.K. Beyer, I. Belenykaja: A new method for the dealumination of faujasite-type zeolites, Stud. Surf. Sci. Catal. 5, 203–210 (1980)

    CAS  Google Scholar 

  213. D.S. Shihabi, W.E. Garwood, P. Chu, J.N. Miale, R.M. Lago, C.T.W. Chu, C.D. Chang: Aluminum insertion into high-silica zeolite frameworks 2, Binder activation of high-silica ZSM-5, J. Catal. 93, 471–474 (1985)

    CAS  Google Scholar 

  214. E.F. Vansant: Pore size engineering in zeolites, Stud. Surf. Sci. Catal. 37, 143–153 (1988)

    CAS  Google Scholar 

  215. M. Niwa, S. Kato, T. Hattori, Y. Marakami: Fine control of the pore-opening size of the zeolite mordenite by chemical vapor-deposition of silicon alkoxide, J. Chem. Soc. Faraday Trans. I 80, 3135–3145 (1984)

    CAS  Google Scholar 

  216. K. Klier: Transition metal ions in zeolites – the perfect surface sites, Langmuir 4, 13–25 (1988)

    CAS  Google Scholar 

  217. T.-Y. Yan: Zeolite-based catalysts for hydrocracking, I & EC Prod. Des. Devel. 22, 154–160 (1983)

    CAS  Google Scholar 

  218. E.G. Derouane: Reactions of organometallics with the surfaces of zeolites, NATO ASI Ser. C 231, 299 (1988)

    CAS  Google Scholar 

  219. S.T. Homeyer, W.M.H. Sachtler: Design of metal clusters in NaY zeolite, Stud. Surf. Sci. Catal. 49, 975–984 (1989)

    Google Scholar 

  220. J.B. Nagy, M. van Eenoo, E.G. Derouane: Highly dispersed supported iron particles from the decomposition of iron carbonyl on HY zeolite, J. Catal. 58, 230–237 (1979)

    CAS  Google Scholar 

  221. E.G. Derouane: Factors affecting the deactivation of zeolites by coking, Stud. Surf. Sci. Catal. 20, 221–240 (1985)

    CAS  Google Scholar 

  222. M. Guisnet, P. Magnoux: Zeolite microporous solids, NATO ASI Ser. C 352, 437 (1992)

    CAS  Google Scholar 

  223. J.W. Beeckman, G.F. Froment: Catalyst deactivation by active-site coverage and pore blockage, Ind. Eng. Chem. Fundam. 18, 245–256 (1979)

    CAS  Google Scholar 

  224. H.G. Karge: Coke formation on zeolites. In: Introduction to Zeolite Science and Practice, ed. by H. van Bekkum, E.M. Flanigen, J.C. Jansen (Elsevier, Amsterdam 1991) p. 531

    Google Scholar 

  225. E.G. Derouane, Z. Gabelica: A novel effect of shape selectivity – Molecular traffic control in zeolite ZSM-5, J. Catal. 65, 486–489 (1980)

    CAS  Google Scholar 

  226. N.Y. Chen, W.E. Yarwood, F.Y. Dwyer: Shape selective catalysis in industrial applications, Chem. Ind. 36 (1989)

    Google Scholar 

  227. D.E.W. Vaughan: The synthesis and manufacture of zeolites, Chem. Eng. Prog. 82, 25–31 (1988)

    Google Scholar 

  228. W.F. Hölderich: New horizons in catalysis using modified and unmodified pentasil zeolites, Pure Appl. Chem. 58, 1383–1388 (1986)

    Google Scholar 

  229. H. van Bekkum, H.W. Kauwenhoven: Zeolites and fine chemicals, Stud. Surf. Sci. Catal. 41, 45–59 (1988)

    Google Scholar 

  230. W.F. Hölderich: New aspects in the performance of heterogeneous catalysts for intermediates and fine chemicals, Stud. Surf. Sci. Catal. 41, 83–90 (1988)

    Google Scholar 

  231. W.F. Hölderich, M. Hesse, F. Naumann: Zeolites – Catalysts for organic syntheses, Angew. Chem. Int. Edit. 27, 226–246 (1988)

    Google Scholar 

  232. A. Corma, M.J. Climent, H. Garcia, J. Primo: Design of synthetic zeolites as catalysts in organic reactions, acylation of anisole by acyl chlorides or carboxylic acids over acid zeolites, Appl. Catal. 49, 109–123 (1989)

    CAS  Google Scholar 

  233. R.P. Townsend: Introduction to Zeolite Science and Practice (Elsevier, Amsterdam 1991) p. 359

    Google Scholar 

  234. M. Pansini, C. Colella, M. de Gennaro: Chromium removal from water by ion exchange using zeolite, Desalination 83, 145–157 (1991)

    CAS  Google Scholar 

  235. E. Passaglia, G. Vezzalini: Crystal-chemistry of diagenetic zeolites in volcanoclastic deposits of Italy, Contrib. Mineral. Petrol. 90, 190–198 (1985)

    CAS  Google Scholar 

  236. A. Nastro, C. Colella: Column ion-exchange data for ammonium removal from water by phillipsite tuff, Ing. Chim. Ital. 19, 41–45 (1983)

    CAS  Google Scholar 

  237. C. Colella, R. Aiello: Natural Zeolites, Occurrence, Properties and Utilization, ed. by D. Kallo, H.S. Sherry (Akadémiai Kiadó, Budapest 1988) p. 491

    Google Scholar 

  238. J.L. Reymonent: A bibliographic study, 4th Meeting of French Zeolite Group, Evreux, France (1988)

    Google Scholar 

  239. Eli Lilly Co: Process for the Preparation of Tricyclazole, Ger. Offen. DE 2928867 (1980)

    Google Scholar 

  240. Union Carbide Corp.: Removal of Caffeine by Selective Adsorption Using Zeolite Adsorbents, Eur. Pat. Appl., Vol. EP0013451 (1980)

    Google Scholar 

  241. Blendax Werke Schneider Co.: Tooth Paste, JP, Vol. 55-105611 (1980)

    Google Scholar 

  242. Union Carbide Corp.: Bulk Separation of Inositol and Sorbitol by Selective Adsorption on Zeolitic Sieves, JP, Vol. 118409 (1988)

    Google Scholar 

  243. T. Bein, P. Enzel, F. Bauer, L. Zuppiroli: Stabilization of conducting heteroaromatic polymers in large-pore zeolite channels, Adv. Chem. Ser. 226, 433–449 (1989)

    CAS  Google Scholar 

  244. T. Yamanaka, K. Honaga, K. Ichihashi, T. Murata, S. Nohara: Light-Resistant Polyamide Moldings, JP, Vol. 61009457A 19860117 (1986)

    Google Scholar 

  245. J. Karger-Kocsis, M. Sipos, M. Moser, K. Senyei, B. Lengyel: Powder Coating Compositions, Hung. Teljes, HU, Vol. 34228 A2 19850228 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to István Pálinkó , Zoltán Kónya or Ákos Kukovecz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Pálinkó, I., Kónya, Z., Kukovecz, Á., Kiricsi (deceased), I. (2013). Zeolites. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_22

Download citation

Publish with us

Policies and ethics