Skip to main content

Nanocrystalline Functional Oxide Materials

  • Chapter
Springer Handbook of Nanomaterials

Part of the book series: Springer Handbooks ((SHB))

  • 12k Accesses

Abstract

Nanoparticles are small clusters of atoms about 1–100 nm long. The term “nano” derives from the Greek word nanos, which means dwarf or extremely small. A nanometer is a billionth of a meter or 10−9 m. Nanostructured materials have attracted the attention of different types of people such as scientists, engineers, etc. Essentially, the reason is that nanocrystals in the 1–10 nm range make up a new realm of matter in which physical and chemical properties change as size changes. Metal oxide nanoparticles are an important class of materials for their optical, magnetic, and electronic properties and have a wide range of applications such as in catalysts, sensors, optical materials, electrical materials, and magnetic storage. Synthesis routes for nanoparticles can be broadly classified into solid-state and soft chemical routes such as gel combustion, coprecipitation, sol–gel, hydrothermal/solvothermal, sonochemical, template synthesis, etc. This chapter deals with the various properties of nanoparticles synthesized using different techniques. The application of nanooxides as sorbents for environmental remediation is also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

AAO:

anodized aluminum oxide

AWWA:

American Water Works Association

CCT:

correlated color temperature

CIE:

International Commission on Illumination

CO:

cuboctahedron

CT:

charge transfer

CTAB:

cetyltrimethylammonium bromide

CW:

continuous-wave

DC:

direct current

DEG:

diethylene glycol

EDTA:

ethylenediaminetetraacetic acid

EPA:

Environmental Protection Agency

HDD:

1,2-hexadecanediol

HMO:

hydrous manganese dioxide

HMTA:

hexamethylenetetramine

ITO:

indium tin oxide

LED:

light-emitting diode

MRI:

magnetic resonance imaging

MWCNT:

multiwalled carbon nanotube

NBE:

near-band-edge

O/F:

oxidant-to-fuel

OLED:

organic light-emitting diode

PL:

photoluminescence

PVP:

polyvinyl pyrrolidone

QD:

quantum dot

RE:

rare-earth

SDCH:

samaria-doped ceria

SOFC:

solid oxide fuel cell

TCO:

transparent conductive oxide

TEM:

transmission electron microscopy

TIC:

toxic industrial chemical

TOPO:

trioctylphosphine oxide

TWC:

three-way catalyst

UV:

ultraviolet

WHO:

World Health Organization

XRD:

x-ray diffraction

n-HApC:

nanohydroxyapatite/chitosan

nHAp:

nanohydroxyapatite particle

References

  1. S. Banerjee, A.K. Tyagi (Eds.): Functional Materials: Preparation, Processing and Applications (Elsevier, Amsterdam 2011)

    Google Scholar 

  2. M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A.K. Tyagi, S.K. Gupta, V. Yakhmi: Room temperature H_2S gas sensing at ppb level by single crystal In_2O_3 whiskers, Sens. Actuators B 133, 456 (2008)

    Article  CAS  Google Scholar 

  3. V. Jayaraman, D. Krishnamurthy, R. Ganesan, A. Thiruvengadasami, R. Sudha, M.V.R. Prasad, T. Gnanasekaran: Development of yttria doped thoria solid electrolyte for use in liquid sodium systems, Ionics 13, 299 (2007)

    Article  CAS  Google Scholar 

  4. P.S. Ramanjaneyulu, A.N. Kumar, Y.S. Sayi, K.L. Ramakumar, S.K. Nayak, S. Chattopadhyay: A new ion selective electrode for cesium(I) based on calix[4]arene-crown-6 compounds, J. Hazard. Mater. 205/206, 81–88 (2012)

    Article  CAS  Google Scholar 

  5. A.K. Tyagi, J. Ramkumar, O.D. Jayakumar: Inorganic-organic hybrid nanorod of Ag and rhodamine 6G: Turn on fluorescence sensors for highly selective detection of Pb(II) ions in aqueous solution, Analysts 137, 760 (2012)

    Article  CAS  Google Scholar 

  6. T. Karir, P.A. Hassan, S.K. Kulshreshtha, G. Samuel, N. Sivaprasad, V. Meera: Surface modification of polystyrene using polyaniline nanostructures for biomolecule adhesion in radioimmunoassay, Anal. Chem. 78, 3577 (2006)

    Article  CAS  Google Scholar 

  7. A. Khaleel: Nanostructured pure γ-Fe_2O_3 via forced precipitation in an organic solvent, Chem. Eur. J. 10, 925 (2004)

    Article  CAS  Google Scholar 

  8. Q. Tang, Q. Zhang, P. Wang, Y. Wang, H. Wan: Characterizations of cobalt oxide nanoparticles within faujasite zeolites and the formation of metallic cobalt, Chem. Mater. 16, 1967 (2004)

    Article  CAS  Google Scholar 

  9. H.R. Chen, J.L. Shi, Y.S. Li, J.N. Yan, Z.L. Hua, H.G. Chen, D.S. Yan: A new method for the synthesis of highly dispersive and catalytically active platinum nanoparticles confined in mesoporous zirconia, Adv. Mater. 15, 1078 (2003)

    Article  CAS  Google Scholar 

  10. G. Ertl, H. Knözinger, J. Weitkamp (Eds.): Handbook of Heterogeneous Catalysis (Wiley VCH, Weinheim 1997)

    Google Scholar 

  11. N. Perkas, Y. Koltypin, O. Palchik, A. Gedanken, S. Chandrasekaran: Oxidation of cyclohexane with nanostructured amorphous catalysts under mild conditions, Appl. Catal. A: Gen. 209, 125 (2001)

    Article  CAS  Google Scholar 

  12. V. Kesavan, D. Dhar, Y. Koltypin, N. Perkas, O. Palchik, A. Gedanken, S. Chandersekaran: Nanostructured amorphous metals, alloys, and metal oxides as new catalysts for oxidation, Pure Appl. Chem. 73, 85 (2001)

    Article  CAS  Google Scholar 

  13. N. Pinna, G. Neri, M. Antonietti, M. Niederberger: Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing, Angew. Chem. Int. Ed. 43, 4345–4349 (2004)

    Article  CAS  Google Scholar 

  14. S. Li, R. Guo, J. Li, Y. Chen, W. Liu: Synthesis of NiO–ZrO2 powders for solid oxide fuel cells, Ceram. Int. 29, 883 (2003)

    Article  CAS  Google Scholar 

  15. A. Murali, A. Barve, V.J. Leppert, H. Risbud: Synthesis and characterization of indium oxide nanoparticles, Nano Lett. 1, 287 (2001)

    Article  CAS  Google Scholar 

  16. J. Liang, Z. Deng, X. Jiang, F. Li, Y. Li: Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation, Inorg. Chem. 41, 3602 (2002)

    Article  CAS  Google Scholar 

  17. R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D. Sarma: Synthesis and characterization of Mn-doped ZnO nanocrystals, J. Phys. Chem. B 108, 6303–6310 (2004)

    Article  CAS  Google Scholar 

  18. S.C. Pillai, J.M. Kelly, D.E. McCormack, R. Ramesh: Self-assembled arrays of ZnO nanoparticles and their application as varistor materials, J. Mater. Chem. 14, 1572 (2004)

    Article  CAS  Google Scholar 

  19. Z. Li, H. Chen, H. Bao, M. Gao: One-pot reaction to synthesize water-soluble magnetite nanocrystals, Chem. Mater. 16, 1391 (2004)

    Article  CAS  Google Scholar 

  20. W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, T. Park: Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles, Angew. Chem. Int. Ed. 43, 1115 (2004)

    Article  CAS  Google Scholar 

  21. R.J. Brook (Ed.): Processing of Ceramics, Materials Science and Technology, Vol. 17 (VCH, Weinheim 1996)

    Google Scholar 

  22. W.D. Kingery, K.H. Bowen, D.R. Uhlmann: Introduction to Ceramics (Wiley, New York 1976)

    Google Scholar 

  23. S.S. Manoharan, K.C. Patil: Convergent beam electron diffraction analysis of lattice shifts in aluminum nitride, J. Am. Ceram. Soc. 75, 1012 (1992)

    Article  CAS  Google Scholar 

  24. S.R. Jain, K.C. Adiga, V.R. Pai Verneker: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combust. Flame. 40, 71 (1981)

    Article  CAS  Google Scholar 

  25. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, J. Exarhos: Glycine-nitrate combustion synthesis of oxide ceramic powders, Mater. Lett. 10, 6 (1990)

    Article  CAS  Google Scholar 

  26. Y.R. Ma, L.M. Qi, J.M. Ma, H.M. Cheng, W. Shen: Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer, Langmuir 19, 9079 (2003)

    Article  CAS  Google Scholar 

  27. Y. Liu, W.W. Zhao, G. Zhang: Soft template synthesis of mesoporous Co3O4/RuO2 ⋅ xH2O composites for electrochemical capacitors, Electrochim. Acta 53, 3296 (2008)

    Article  CAS  Google Scholar 

  28. A.J. Moulson, J.M. Herbert: Electroceramics: Materials, Properties and Applications, 2nd edn. (Wiley, Chichester 2003) p. 100

    Google Scholar 

  29. J.D. Mackenzie, E.P. Bescher: Chemical routes in the synthesis of nanomaterials using the sol–gel process, Acc. Chem. Res. 40, 810–818 (2007)

    Article  CAS  Google Scholar 

  30. H. Hayashi, Y. Hakuta: Hydrothermal synthesis of metal oxide nanoparticles in supercritical water, Materials 3, 3794–3817 (2010)

    Article  CAS  Google Scholar 

  31. A. Gedanken: Sonochemistry andits application to nanochemistry, Curr. Sci. 85, 1720–1722 (2003)

    CAS  Google Scholar 

  32. A. Fujishima, T.N. Rao, D.A. Tryk: Titanium dioxide photocatalysis, Photochem. Photobiol. C 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  33. D.A. Tryk, A. Fujishima, K. Honda: Recent topics in photoelectrochemistry: Achievements and future prospects, Electrochim. Acta 45, 2363 (2000)

    Article  CAS  Google Scholar 

  34. M. Grätzel: Photoelectrochemical cells, Nature 414, 338 (2001)

    Article  Google Scholar 

  35. A. Hagfeldt, M. Grätzel: Light-induced redox reactions in nanocrystalline systems, Chem. Rev. 95, 49 (1995)

    Article  CAS  Google Scholar 

  36. A.L. Linsebigler, G. Lu, J.T. Yates Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  37. A. Millis, S. Le Hunte: An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A 108, 1 (1997)

    Article  Google Scholar 

  38. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann: Environmental applications of semiconductor photocatalysis, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  39. M.A. Fox, M.T. Dulay: Heterogeneous photocatalysis, Chem. Rev. 93, 341 (1993)

    Article  CAS  Google Scholar 

  40. X. Chen, S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  41. Z.L. Wang: Zinc oxide nanostructures: Growth, properties and applications, J. Phys.: Condens. Matter 16, R829–R858 (2004)

    Article  CAS  Google Scholar 

  42. S.P. Feofilov, A.A. Kaplyanskii, R.I. Zakharchenya: Optical generation of nonequilibrium terahertz resonant vibrational excitations in highly porous aluminium oxide, J. Lumin. 66/67, 349 (1996)

    Article  Google Scholar 

  43. S.P. Feofilov, A.A. Kaplyanskii, R.I. Zakcharchenya, Y. Sun, K.W. Jang, R.S. Meltzer: Spectral hole burning in Eu3+-doped highly porous γ-aluminum oxide, Phys. Rev. B 54, 3690 (1996)

    Article  Google Scholar 

  44. K.S. Hong, R.S. Meltzer, B. Bihari, D.K. Williams, B.M. Tissue: Spectral hole burning in crystalline Eu2O3 and Y2O3:Eu3+ nanoparticle, J. Lumin. 76/77, 234 (1998)

    Article  Google Scholar 

  45. K. Kobayashi, T. Ishida, Y. Nakato, H. Tsbomura: Mechanism of carrier transport in highly efficient solar cells having indium tin oxide/Si junctions, J. Appl. Phys. 69, 1736 (1991)

    Article  CAS  Google Scholar 

  46. C. Cantalini, W. Wlodarski, H.T. Sun, M.Z. Atashbar, M. Passacantando, A.R. Phani, S. Santucci: Investigation of the cross sensitivity of NO2 sensors based on In2O3 thin films prepared by sol gel and vacuum thermal evaporation, Thin Solid Films 350, 276 (1999)

    Article  CAS  Google Scholar 

  47. H. Steffes, C. Imawan, F. Solzbacher, E. Obermeier: Enhancement of NO2 sensing properties of In2O3 based thin films using an Au or Ti surface modification, Sens. Actuators B 78, 106 (2001)

    Article  CAS  Google Scholar 

  48. J. Tamaki, C. Naruo, Y. Yamamoto, M. Matsuoka: Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation, Sens. Actuators B 83, 190 (2002)

    Article  CAS  Google Scholar 

  49. W.-Y. Chung, G. Sakai, K. Shimanoe, N. Miura, D.-D. Lee, N. Yamazoe: Spin coated indium oxide thin film on alumina and silicon substrate and their gas sensing properties, Sens. Actuators B 65, 312 (2000)

    Article  CAS  Google Scholar 

  50. K.L. Chopra, S. Major, K. Pandya: Transparent conductors – A status review, Thin Solid Films 102, 1 (1983)

    Article  CAS  Google Scholar 

  51. A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, W. Gopel: In2O3 and MoO3–In2O3 thin film semiconductor sensors:interaction with NO2 and O3, Sens. Actuators, B 47, 92 (1998)

    CAS  Google Scholar 

  52. J.H. Shin, S.H. Shin, I. Park: Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature, J. Appl. Phys. 89, 5199 (2001)

    Article  CAS  Google Scholar 

  53. L. Qingsheng, L. Weigang, A. Ma, T. Jinke, J. Lin, J. Fang: Study of quasi-monodisperse In2O3 nanocrystals: Synthesis and optical determination, J. Am. Chem. Soc. 127, 5276–5279 (2005)

    Article  CAS  Google Scholar 

  54. Y. Zhao, Z. Zhang, Z. Wu, H. Dang: Synthesis and characterization of single-crystalline In2O3 nanocrystals via solution dispersion, Langmuir 20, 27–29 (2004)

    Article  CAS  Google Scholar 

  55. H. Yamamura, Y. Takahashi, K. Kakinuma: Preparation of In2O3 fine powders and their two-step sintering, J. Ceram. Soc. Jpn. 109, 1000–1003 (2001)

    Article  CAS  Google Scholar 

  56. S. Kim, K. Seo, J. Lee, J. Kim, H. Lee, J. Lee: Preparation and sintering of nanocrystalline ITO powders with different SnO2 content, J. Eur. Ceram. Soc. 26, 73–80 (2006)

    Article  CAS  Google Scholar 

  57. A. Gurlo, M. Ivanovskaya, N. Barsan, M. Schweizer-Berberich, U. Weimar, W. Gopel, A. Dieguez: Grain size control in nanocrystalline In2O3 semiconductor, Sens. Actuators B Chem. 44, 327–333 (1997)

    Article  Google Scholar 

  58. I.V. Kityk, J. Ebothé, A.E. Hichou, B.E. Idrissi, M. Addou, J. Krasowski: Nonlinear optical effects in In2O3:Sn-glass nano-interfaces, J. Opt. A. 5, 61–65 (2003)

    CAS  Google Scholar 

  59. J. Ederth, A. Hultåker, P. Heszler, G.A. Niklasson, C.G. Granqvist, A. van Doorn, C. van Haag, M.J. Jongerius, D. Burgard: Electrical and optical properties of thin films prepared by spin coating a dispersion of nano-sized tin-doped indium oxide particles, Smart Mater. Struct. 11, 675–678 (2002)

    Article  CAS  Google Scholar 

  60. D.-B. Yu, S.-H. Yu, S.-Y. Zhang, J. Zuo, D.-B. Wang, Y.-T. Qian: Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure, Adv. Funct. Mater. 13, 497 (2003)

    Article  CAS  Google Scholar 

  61. S.-C. Chang, M.H. Huang: Formation of short In2O3 nanorod arrays within mesoporous silica, J. Phys. Chem. C 112, 2304–2307 (2008)

    Article  CAS  Google Scholar 

  62. B. Yu: Nonlinear optical properties of In2O3 nanoparticles, Acta Phys. Sin. 48(2), 320 (1999)

    CAS  Google Scholar 

  63. H. Zhou, W. Cai, L. Zhang: Synthesis and structure of indium oxide nanoparticles dispersed within pores of mesoporous silica, Mater. Res. Bull. 34(6), 845 (1999)

    Article  CAS  Google Scholar 

  64. T. Wang, Q. Pan, J. Zhang: In2O3 ultrafine powder synthesis by sol–gel method, J. Shanghai Univ. Engl. Ed. 5(4), 331 (2001)

    Article  Google Scholar 

  65. X. Wu: Synthesis, structure, and optical properties of nanometer-sized In2O3 capped by anionic surfactant, J. Vac. Sci. Technol. 15(6), 1889 (1997)

    Article  CAS  Google Scholar 

  66. A.S. Ryzhikov, R.B. Vasiliev, M.N. Rumyantseva: Microstructure and electrophysical properties of SnO2, ZnO and In2O3 nanocrystalline films prepared by reactive magnetron sputtering, Mater. Sci. Eng. B 96, 268 (2002)

    Article  Google Scholar 

  67. T. Tsuchiya, T.A. Watanabe, H. Niino, A. Yabe, I. Yamaguchi, T. Manabe, T. Kumagai, S. Mizuta: Low temperature growth of metal oxide thin films by metallorganic laser photolysis, Appl. Surf. Sci. 186, 173 (2002)

    Article  CAS  Google Scholar 

  68. H. Cao, X. Qiu, Y. Liang, Q. Zhu: Room-temperature ultraviolet-emitting In2O3 nanowires, Appl. Phys. Lett. 83, 761 (2003)

    Article  CAS  Google Scholar 

  69. S.B. Qadri, H. Kim, M. Yousuf, H.R. Khan: Synthesis of In2O3–Sc2O3 transparent conducting oxide films, Appl. Surf. Sci. 208/209, 611 (2003)

    Article  CAS  Google Scholar 

  70. J.G. Wen, J.Y. Lao, D.Z. Wang, T.M. Kyaw, Y.L. Foo, Z.F. Ren: Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons, Chem. Phys. Lett. 372, 717 (2003)

    Article  CAS  Google Scholar 

  71. X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao: Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires, Chem. Phys. Lett. 373, 28 (2003)

    Article  CAS  Google Scholar 

  72. K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret: Synthesis of indium and indium oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing, Adv. Funct. Mater. 13, 553 (2003)

    Article  CAS  Google Scholar 

  73. S. Avivi, O. Palchik, V. Palchik, M.A. Slifkin, A.M. Weiss, A. Gedanken: Sonochemical synthesis of nanophase indium sulfide, Chem. Mater. 13, 2195 (2001)

    Article  CAS  Google Scholar 

  74. Y. Ohhata, F. Shinoki, S. Yoshida: Optical properties of r.f. reactive sputtered tin-doped In2O3 films, Thin Solid Films 59, 255 (1979)

    Article  CAS  Google Scholar 

  75. L. Dai, X.L. Chen, J.K. Jian, M. He, T. Zhou, B.Q. Hu: Fabrication and characterization of In2O3 nanowires, Appl. Phys. A 75, 687 (2002)

    Article  CAS  Google Scholar 

  76. Y.H. Ng, S. Ikeda, T. Harada, S. Higashida, T. Sakat, H. Mori, M. Matsumura: Fabrication of hollow carbon nanospheres encapsulating platinum nanoparticles using a photocatalytic reaction, Adv. Mater. 19, 597 (2007)

    Article  CAS  Google Scholar 

  77. I. Hamberg, C.G. Granqvist: Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows, J. Appl. Phys. 60, R123 (1986)

    Article  CAS  Google Scholar 

  78. H.J. Zhou, W.P. Cai, L.D. Zhang: Photoluminescence of indium–oxide nanoparticles dispersed within pores of mesoporous silica, Appl. Phys. Lett. 75, 495 (1999)

    Article  CAS  Google Scholar 

  79. E.C.C. Souza, E.N.S. Muccillo: Characterization of indium oxide nanoparticles prepared by soft chemistry route, Adv. Sci. Technol. 45, 248 (2006)

    Article  CAS  Google Scholar 

  80. W.S. Seo, H.H. Jo, K. Lee, J.T. Park: Direct printing of bioceramic implants with spatially localized angiogenic factors, Adv. Mater. 15, 795 (2003)

    Article  CAS  Google Scholar 

  81. P. Zhu, W. Wu, J. Zhou, W. Zhang: Preparation of size-controlled In2O3 nanoparticles, Appl. Organomet. Chem. 21, 909 (2007)

    Article  CAS  Google Scholar 

  82. D. Chu, Y.-P. Zeng, D. Jiang, J. Xu: Tuning the phase and morphology of In2O3 nanocrystals via simple solution routes, Nanotechnology 18, 435605 (2007)

    Article  Google Scholar 

  83. T.-S. Ko, C.-P. Chu, J.-R. Chen, T.-C. Lu, H.-C. Kuo, S.-C. Wang: Tunable light emissions from thermally evaporated In2O3 nanostructures grown at different growth temperatures, J. Cryst. Growth 310, 2264–2267 (2008)

    Article  CAS  Google Scholar 

  84. C. Li, D. Zhang, S. Han, X. Liu, T. Tang, C. Zhou: Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties, Adv. Mater. 15, 143 (2003)

    Article  CAS  Google Scholar 

  85. M.J. Zheng, L.D. Zhang, G.H. Li, X.Y. Zhang, F. Wang: Ordered indium-oxide nanowire arrays and their photoluminescence properties, Appl. Phys. Lett. 79, 839 (2001)

    Article  CAS  Google Scholar 

  86. J. Zhang, X. Qing, F. Jing, Z. Dai: A route to Ag-catalyzed growth of the semiconducting In2O3 nanowires, Chem. Phys. Lett. 371, 311 (2003)

    Article  CAS  Google Scholar 

  87. C. Liang, G. Meng, Y. Lei, F. Phillipp, L. Zhang: Catalytic growth of semiconducting In2O3 nanofibers, Adv. Mater. 13, 1330 (2001)

    Article  CAS  Google Scholar 

  88. K.C. Kam, F.L. Deepak, A.K. Cheetham, R. Rao: In2O3 nanowires, nanobouquets and nanotrees, Chem. Phys. Lett. 397, 329 (2004)

    Article  CAS  Google Scholar 

  89. X.Y. Kong, L. Wang: Structures of indium oxide nanobelts, Solid State Commun. 128, 1 (2003)

    Article  CAS  Google Scholar 

  90. T. Tsuruoka, C.H. Liang, K. Terabe, T. Hasegawa: Optical waveguide properties of single indium oxide nanofibers, J. Opt. A: Pure Appl. Opt. 10, 055201 (2008)

    Article  CAS  Google Scholar 

  91. Y. Li, Y. Bando, D. Golberg: Single-crystalline In2O3 nanotubes filled with In, Adv. Mater. 15, 581 (2003)

    Article  CAS  Google Scholar 

  92. C. Wang, D. Chen, X. Jiao, C. Chen: Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties, J. Phys. Chem. C 111, 13398–13403 (2007)

    Article  CAS  Google Scholar 

  93. J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi: Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature, Chem. Phys. Lett. 384, 246–250 (2004)

    Article  CAS  Google Scholar 

  94. J.S. Lee, K. Park, S. Nahm, S.W. Kim, S. Kim: Ga2O3 nanomaterials synthesized from ball-milled GaN powders, J. Cryst. Growth 244, 287 (2002)

    Article  CAS  Google Scholar 

  95. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade: Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  96. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao: Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE, J. Cryst. Growth 184/185, 605 (1998)

    CAS  Google Scholar 

  97. W. Yin, D.V. Esposito, S. Yang, C. Ni, J.G. Chen, G. Zhao, Z. Zhang, C. Hu, M. Cao, B. Wei: Controlling novel red-light emissions by doping In2O3 nano/microstructures with interstitial nitrogen, J. Phys. Chem. C, 114(31), 13234–13240 (2010)

    Article  CAS  Google Scholar 

  98. G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu: Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3 − δ nanostructures, Phys. Rev. B 79, 174406 (2009)

    Article  CAS  Google Scholar 

  99. E. Antic-Fidancev, J. Aride, M. Lemaitre-Blaise, P. Porcher, M. Taibi: Emission spectra and crystal field calculation of europium-doped C-type In2O3 oxide, J. Alloys Compd. 188, 242 (1992)

    Article  CAS  Google Scholar 

  100. H.K. Kim, C.C. Li, P.J.J. Barrios: Erbium-doped indium oxide films prepared by radio frequency sputtering, Vac. Sci. Technol. A 12, 3152 (1994)

    Article  CAS  Google Scholar 

  101. J. Vela, B.S. Prall, P. Rastogi, D.J. Werder, J.L. Casson, D.J. Williams, V.I. Klimov, J.A. Hollingsworth: Sensitization and protection of lanthanide ion emission in In2O3:Eu nanocrystal quantum dots, J. Phys. Chem. C 112, 20246 (2008)

    Article  CAS  Google Scholar 

  102. Y.G. Choi, S.M. Yu, W.J. Chung: Local structural environment and photoluminescence of Er3+ ions doped in indium tin oxide nanopowder, Chem. Phys. Lett. 461, 290 (2008)

    Article  CAS  Google Scholar 

  103. R. Reisfeld, C.K. Jorgensen, K.A. Gschneider, L. Eyring (Eds.): Handbook of the physics and chemistry of rare earths (Elsevier, Amsterdam, 1987)

    Google Scholar 

  104. D.P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu, A.K. Tyagi: Indium oxide and europium/dysprosium doped indium oxide nanoparticles: Sonochemical synthesis, characterization and photoluminescence studies, J. Phys. Chem. C 112, 6781 (2008)

    Article  CAS  Google Scholar 

  105. Q. Xiao, Y. Liu, L. Liu, R. Li, W. Luo, X. Chen: Eu3+-doped In2O3 nanophosphors: Electronic structure and optical characterization, J. Phys. Chem. C 114(20), 9314–9321 (2010)

    Article  CAS  Google Scholar 

  106. Z. Orel, B. Orel: Optical properties of pure CeO2 and mixed CeO2/SnO2 thin film coatings, Phys. Status Solidi (b) 186, K33–K36 (1994)

    Article  Google Scholar 

  107. S. Tsunekawa, T. Fukuda, A. Kasuya: Blue shift in ultraviolet absorption spectra of monodisperse CeO2 − x nanoparticles, J. Appl. Phys. 87, 1318 (2000)

    Article  CAS  Google Scholar 

  108. M. Yamashita, K. Kameyama, S. Yabe, S. Yoshida, Y. Fujishiro, T. Kawai, T. Sato: Synthesis and microstructure of calcia doped ceria as UV filters, J. Mater. Sci. 37, 683 (2002)

    Article  CAS  Google Scholar 

  109. C.H. Kim, T. Thompson: On the importance of nanocrystalline gold for Au/CeO2 water-gas shift catalysts, J. Catal. 244, 248 (2006)

    Article  CAS  Google Scholar 

  110. Q. Fu, W. Deng, H. Saltsburg: Activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction, Appl. Catal. B 56, 57–68 (2006)

    Google Scholar 

  111. S. Imamura: Ceria-based wet-oxidation catalysts. In: Catalysis by Ceria and Related Materials, Vol. 14, ed. by A. Trovarelli (Imperial College, London 2002) p. 431

    Chapter  Google Scholar 

  112. D. Goi, C. Leitenburg, G. Dolcetti, A. Trovarelli: Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement, Environ. Technol. 25, 1397 (2004)

    Article  CAS  Google Scholar 

  113. G. Blanco, M.A. Cauqui, J.J. Delgado, A. Galtayries: Preparation and characterization of CeMnO composites with applications in catalytic wet oxidation processes, Surf. Interface Anal. 36, 752 (2004)

    Article  CAS  Google Scholar 

  114. V.D. Kosynkin, A.A. Arzgatkina, E.N. Ivanov, G. Chtoutsa: The study of process production of polishing powder based on cerium dioxide, J. Alloys Compd. 303/304, 421 (2000)

    Article  Google Scholar 

  115. T.S. Stefanik, L. Tuller: Ceria-based gas sensors, J. Eur. Ceram. Soc. 21, 1967 (2001)

    Article  CAS  Google Scholar 

  116. G.R. Leandro, S.A. Jose, H. Miguel: Single-step process to prepare CeO2 nanotubes with improved catalytic activity, Nano Lett. 9, 1395–1400 (2009)

    Article  CAS  Google Scholar 

  117. S. Logothetidis, O. Patsalas, C. Charitidis: Enhanced catalytic activity of nanostructured cerium oxide films, Mater. Sci. Eng. C 23, 803 (2003)

    Article  CAS  Google Scholar 

  118. F. Larachi, J. Pierre, A. Adnot, A. Bernis: Ce 3d XPS study of composite Ce x Mn1 − xO2 − y wet oxidation catalysts, Appl. Surf. Sci. 195, 236 (2002)

    Article  CAS  Google Scholar 

  119. M.T. Dario, A. Bachiorrini: Interaction of mullite with some polluting oxides in diesel vehicle filters, Ceram. Int. 25, 511 (1999)

    Article  CAS  Google Scholar 

  120. R. DiMonte, P. Fornasiero, M. Graziani, J. Kaspar: Oxygen storage and catalytic NO removal promoted by CeO2-containing mixed oxides, J. Alloys Compd. 277, 877 (1998)

    Article  Google Scholar 

  121. G.R. Bamwenda, H. Arakawa: Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq 4+ and Feaq 3+ species, J. Mol. Catal. A 161, 105 (2000)

    Article  CAS  Google Scholar 

  122. A.S. Karakoti, N.A. Monteiro-Riviere, R. Aggarwal, J.P. Davis, R.J. Narayan, W.T. Self, J. McGinnis, S. Seal: Nanoceria as antioxidant: Synthesis and biomedical applications, JOM 60, 33 (2008)

    Article  CAS  Google Scholar 

  123. R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal: Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett. 5, 2573 (2005)

    Article  CAS  Google Scholar 

  124. M. Das, S. Patil, N. Bhargava, J.F. Kang, L.M. Riedel, S. Seal, J.J. Hickman: Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons, Biomaterials 28, 1918 (2007)

    Article  CAS  Google Scholar 

  125. M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon: Characterization of CeO2-ZrO2 mixed oxides. Comparison of the citrate and sol–gel preparation methods, Chem. Mater. 15, 395 (2003)

    Article  CAS  Google Scholar 

  126. C. Laberty-Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.M. Stroud, M.S. Doescher, R. Rolison: Sol–gel-derived ceria nanoarchitectures: Synthesis, characterization, and electrical properties, Chem. Mater. 18, 50 (2006)

    Article  CAS  Google Scholar 

  127. M. Hirano, M. Inagaki: Preparation of monodispersed cerium(IV) oxide particles by thermal hydrolysis: Influence of the presence of urea and Gd doping on their morphology and growth, J. Mater. Chem. 10, 473 (2000)

    Article  CAS  Google Scholar 

  128. M. Hirano, E. Kato: Hydrothermal synthesis of cerium(IV) oxide, J. Am. Ceram. Soc. 79, 777 (1996)

    Article  CAS  Google Scholar 

  129. M. Hirano, Y. Fukuda, H. Iwata, Y. Hotta, M. Inagaki: Preparation and spherical agglomeration of crystalline cerium(IV) oxide nanoparticles by thermal hydrolysis, J. Am. Ceram. Soc. 83, 1287 (2000)

    Article  CAS  Google Scholar 

  130. Y. Zhou, N. Rahaman: Effect of redox reaction on the sintering behavior of cerium oxide, Acta Mater. 45, 3635 (1997)

    Article  CAS  Google Scholar 

  131. X. Chu, W. Chung, D. Schmidt: Sintering of sol–gel-prepared submicrometer particles studied by transmission electron microscopy, J. Am. Ceram. Soc. 76, 2115 (1993)

    Article  CAS  Google Scholar 

  132. P.L. Chen, W. Chen: Reactive cerium(IV) oxide powders by the homogeneous precipitation method, J. Am. Ceram. Soc. 76, 1577 (1993)

    Article  CAS  Google Scholar 

  133. L. Mädler, J.W. Stark, E. Pratsinis: Flame-made ceria nanoparticles, J. Mater. Res. 17, 1356 (2002)

    Article  Google Scholar 

  134. T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata, H. Mori: Characterization of cerium(IV) oxide ultrafine particles prepared using reversed micelles, Chem. Mater. 9, 2197 (1997)

    Article  CAS  Google Scholar 

  135. S. Sathyamurthy, K.J. Leonard, R.T. Dabestani, P. Paranthaman: Reverse micellar synthesis of cerium oxide nanoparticles, Nanotechnology 16, 1960 (2005)

    Article  CAS  Google Scholar 

  136. T. Mokkelbost, I. Kaus, T. Grande, M.-A. Einarsrud: Combustion synthesis and characterization of nanocrystalline CeO2-based powders, Chem. Mater. 16, 5489 (2004)

    Article  CAS  Google Scholar 

  137. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin: Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles, Cryst. Growth Des. 7, 950 (2007)

    Article  CAS  Google Scholar 

  138. L. Li, Y. Chen: Preparation of nanometer-scale CeO2 particles via a complex thermo-decomposition method, Mater. Sci. Eng. A 406, 180 (2005)

    Article  CAS  Google Scholar 

  139. X.H. Liao, J.M. Zhu, J.J. Zhu, J.Z. Xu, Y. Chen: Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation, Chem. Commun.(10), 937 (2001)

    Google Scholar 

  140. B. Djuričić, S. Pickering: Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders, J. Eur. Ceram. Soc. 19, 1925 (1999)

    Article  Google Scholar 

  141. R. Si, Y.W. Zhang, L.P. You, C.H. Yan: Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks, Angew. Chem. Int. Ed. 44, 3256 (2005)

    Article  CAS  Google Scholar 

  142. T. Yu, J. Joo, Y.I. Park, T. Hyeon: Large-scale nonhydrolytic sol–gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes, Angew. Chem. Int. Ed. 44, 7411 (2005)

    Article  CAS  Google Scholar 

  143. F. Li, X.H. Yu, H.J. Pan, M.L. Wang, X.Q. Xin: Syntheses of MO2 (M = Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature, Solid State Sci. 2, 767 (2000)

    Article  Google Scholar 

  144. Y.X. Li, X.Z. Zhou, Y. Wang, X.Z. You: Preparation of nano-sized CeO2 by mechanochemical reaction of cerium carbonate with sodium hydroxide, Mater. Lett. 58, 245 (2003)

    Article  CAS  Google Scholar 

  145. X.D. Zhou, W. Huebner, H.U. Anderson: Processing of nanometer-scale CeO2 particles, Chem. Mater. 15, 378 (2003)

    Article  CAS  Google Scholar 

  146. H. Gu, M.D. Soucek: Preparation and characterization of monodisperse cerium oxide nanoparticles in hydrocarbon solvents, Chem. Mater. 19, 1103–1110 (2007)

    Article  CAS  Google Scholar 

  147. S.C. Kuiry, S.D. Patil, S. Deshpande, S. Seal: Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation, J. Phys. Chem. B 109, 6936–6939 (2005)

    Article  CAS  Google Scholar 

  148. H.X. Mai, L.D. Sun, Y.W. Zhang: Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, J. Phys. Chem. B 109, 24380–24385 (2005)

    Article  CAS  Google Scholar 

  149. K.B. Zhou, X. Wang, X.M. Sun, Q. Peng, Y.D. Li: Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal. 229, 206–212 (2005)

    Article  CAS  Google Scholar 

  150. D.E. Zhang, X.M. Ni, H.G. Zheng, X.J. Zhang, J.M. Song: Fabrication of rod-like CeO2: Characterization, optical and electrochemical properties, Solid State Sci. 8, 1290–1293 (2006)

    Article  CAS  Google Scholar 

  151. G.S. Wu, T. Xie, X.Y. Yuan, B.C. Cheng, L.D. Zhang: An improved sol–gel template synthetic route to large-scale CeO2 nanowires, Mater. Res. Bull. 39, 1023–1028 (2004)

    Article  CAS  Google Scholar 

  152. M. Yada, S. Sakai, T. Torikai, T. Watari, S. Fyruta, H. Katsuki: Cerium compound nanowires and nanorings templated by mixed organic molecules, Adv. Mater. 16, 1222–1225 (2004)

    Article  CAS  Google Scholar 

  153. C.W. Sun, H. Li, Z.X. Wang, L.Q. Chen, X.J. Huang: Synthesis and characterization of polycrystalline CeO2 nanowires, Chem. Lett. 133, 662–663 (2004)

    Article  Google Scholar 

  154. R. Yang, L. Guo: Synthesis of cubic fluorite CeO2 nanowires, J. Mater. Sci. 40, 1305–1309 (2005)

    Article  CAS  Google Scholar 

  155. R.J. La, Z.A. Hu, H.L. Li, X.L. Shang, Y.Y. Yang: Template synthesis of CeO2 ordered nanowire arrays, Mater. Sci. Eng. A 368, 145–148 (2004)

    Article  CAS  Google Scholar 

  156. W.Q. Han, L.J. Wu, Y.M. Zhu: Formation and oxidation state of CeO2 − x nanotubes, J. Am. Chem. Soc. 127, 12814–12815 (2005)

    Article  CAS  Google Scholar 

  157. R. Yang, L. Guo: Synthesis of the nanotublar cubic fluorite CeO2, Chin. J. Inorg. Chem. 20, 152–158 (2004)

    CAS  Google Scholar 

  158. S.W. Yang, L. Gao: Controlled synthesis and self-assembly of CeO2 nanocubes, J. Am. Chem. Soc. 128, 9330–9331 (2006)

    Article  CAS  Google Scholar 

  159. J.J. Miao, H. Wang, Y.R. Li, J.M. Zhu, J.J. Zhu: Ultrasonic-induced synthesis of CeO2 nanotubes, J. Crys. Growth 281, 525–529 (2005)

    Article  CAS  Google Scholar 

  160. Z.Y. Guo, F.L. Du, Z.L. Cui: Synthesis and characterization of single-crystal Ce(OH)CO3 and CeO2 triangular microplates, Inorg. Chem. 45, 4167–4169 (2006)

    Article  CAS  Google Scholar 

  161. A. Hadi, I.I. Yaacob: Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsion methods, Mater. Lett. 61, 93–96 (2007)

    Article  CAS  Google Scholar 

  162. J.Y. Bai, Z.D. Xu, Y.F. Zheng, H.Y. Yin: Shape control of CeO2 nanostructure materials in microemulsion systems, Mater. Lett. 60, 1287–1287 (2006)

    Article  CAS  Google Scholar 

  163. Y.Q. Zhai, S.Y. Zhang, H. Pang: Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant, Mater. Lett. 61, 1863–1867 (2007)

    Article  CAS  Google Scholar 

  164. D.E. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, H.G. Zheng: Optical and electrochemical properties of CeO2 spindles, Chem. Phys. Chem. 7, 2468–2470 (2006)

    Article  CAS  Google Scholar 

  165. D.E. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, H.G. Zheng: Fabrication of novel threefold shape CeO2 dendrites: Optical and electrochemical properties, Chem. Phys. Lett. 430, 326–329 (2006)

    Article  CAS  Google Scholar 

  166. H.Y. Chang, H.I. Chen: Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique, J. Crys. Growth 283, 457–461 (2005)

    Article  CAS  Google Scholar 

  167. S. Tsunekawa, J.-T. Wang, Y. Kawazoe: Lattice constants and electron gap energies of nano- and subnano-sized cerium oxides from the experiments and first-principles calculations, J. Alloys Compd. 408–412, 1145 (2006)

    Article  CAS  Google Scholar 

  168. L. Yin, Y. Wang, G. Pang, Y. Koltypin, A. Gedanken: Sonochemical synthesis of cerium oxide nanoparticles – Effect of additives and quantum size effect, J. Colloid Interface Sci. 246, 78–84 (2002)

    Article  CAS  Google Scholar 

  169. C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai: Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures, Chem. Mater. 17, 4514 (2005)

    Article  CAS  Google Scholar 

  170. H.-I. Chen, H.-Y. Chang: Synthesis of nanocrystalline cerium oxide particles by the precipitation method, Ceram. Int. 31, 795 (2005)

    Article  CAS  Google Scholar 

  171. A. Corma, P. Atienzar, H. García, J.-Y. Chane-Ching: Hierarchically mesostructured doped CeO2 with potential for solar-cell use, Nat. Mater. 3, 394 (2004)

    Article  CAS  Google Scholar 

  172. R.M. Bueno, J.M. Martinez-Duart, M. Hernandez-Velez, L. Vazquez: Optical and structural characterization of r.f. sputtered CeO2 thin films, J. Mater. Sci. 32, 1861–1865 (1997)

    Article  CAS  Google Scholar 

  173. P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou: Structure-dependent electronic properties of nanocrystalline cerium oxide films, Phys. Rev. B 68, 035104 (2003)

    Article  CAS  Google Scholar 

  174. S. Mochizuki, F. Fujishiro: The photoluminescence properties and reversible photoinduced spectral change of CeO2 bulk, film and nanocrystals, Phys. Status Solidi (b) 246, 2320 (2009)

    Article  CAS  Google Scholar 

  175. S.-H. Yu, H. Colfen, A. Fischer: High quality CeO2 nanocrystals stabilized by a double hydrophilic block copolymer, Colloid Surf. A 243, 49 (2004)

    Article  CAS  Google Scholar 

  176. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri: Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, Mater. Chem. Phys. 115, 423–428 (2009)

    Article  CAS  Google Scholar 

  177. G. Wang, Q. Mu, T. Chen, Y. Wang: Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature, J. Alloys Compd. 493, 202–207 (2010)

    Article  CAS  Google Scholar 

  178. F. Gao, G.H. Li, J.H. Zhang, F.G. Qin, Z.Y. Yao, Z.K. Liu, Z.G. Wang, L.Y. Lin: Growth and photoluminescence of epitaxial CeO2 film on Si(111) substrate, Chin. Phys. Lett. 18, 443 (2001)

    Article  Google Scholar 

  179. C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, Q. Chen: Controlled synthesis of CeO2 nanorods by a solvothermal method, Nanotechnology 16, 1454–1463 (2005)

    Article  CAS  Google Scholar 

  180. C.W. Sun, H. Li, Q. Chen: Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction, J. Phys. Chem. Solids 68, 1785–1790 (2007)

    Article  CAS  Google Scholar 

  181. S. Patil, S. Reshetnikov, M. Haldar, S. Seal: Surface-Derivatized Nanoceria with Human Carbonic Anhydrase II Inhibitors and Fluorophores: A Potential Drug Delivery Device, J. Phys. Chem. C 111, 8437 (2007)

    Article  CAS  Google Scholar 

  182. L. Li, J. Tao, H. Pan, H. Chen, X. Wu, F. Zhu, X. Xu, R. Tang: Colour tuning of core–shell fluorescent materials, J. Mater. Chem. 18, 5363 (2008)

    Article  CAS  Google Scholar 

  183. X. Liu, S. Chen, X. Wang: Synthesis and photoluminescence of CeO2:Eu3+ phosphor powders, J. Lumin. 127, 650 (2007)

    Article  CAS  Google Scholar 

  184. H. Guo, Y. Qiao: Preparation, structural and photoluminescent properties of CeO2:Eu3+ films derived by Pechini sol–gel process, Appl. Surf. Sci. 254, 1961 (2008)

    Article  CAS  Google Scholar 

  185. L. Li, H.K. Yang, B.K. Moon, Z. Fu, C. Guo, J.H. Jeong, S.S. Yi, K. Jang, H.S. Lee: Photoluminescence properties of CeO2:Eu3+ nanoparticles synthesized by a sol–gel method, J. Phys. Chem. C 113, 610 (2009)

    Article  CAS  Google Scholar 

  186. Z. Wang, Z. Quen, J. Lin: Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions doping, Inorg. Chem. 46, 5237 (2007)

    Article  CAS  Google Scholar 

  187. G. Adachi, N. Imanaka, Z.C. Kang: Binary Rare Earth Oxides (Springer, New York 2004)

    Google Scholar 

  188. J.C. Park, H.K. Moon, D.K. Kim, S.H. Byeon, B.C. Kim, K.S. Suh: Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages, Appl. Phys. Lett. 77, 2162 (2000)

    Article  CAS  Google Scholar 

  189. Y.C. Kang, S.B. Park, I.W. Lenggoro, K. Okuyama: Gd2O3:Eu phosphor particles with sphericity, submicron size and non-aggregation characteristics, J. Phys. Chem. Solids 60, 379 (1999)

    Article  CAS  Google Scholar 

  190. B. Mercier, C. Dujardin, G. Ledoux, C. Louis, O. Tillement: Observation of the gap blueshift on Gd2O3:Eu3+ nanoparticles, J. Appl. Phys. 96, 650 (2004)

    Article  CAS  Google Scholar 

  191. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, S. Xia: Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals, J. Phys. Chem. B 108, 19205–19209 (2004)

    Article  CAS  Google Scholar 

  192. A. Bril, W.L. Wanmaker: Fluorescent properties of some europium-activated phosphors, J. Electrochem. Soc. 111, 1363–1368 (1964)

    Article  CAS  Google Scholar 

  193. S. Seo, H. Yang, P.H. Holloway: Controlled shape growth of Eu- or Tb-doped luminescent Gd2O3 colloidal nanocrystals, J. Colloid Interface Sci. 331, 236–242 (2009)

    Article  CAS  Google Scholar 

  194. S.Y. Seo, S. Lee, H.D. Park, N. Shin, K.-S. Sohn: Luminescence of pulsed laser deposited Gd2O3:Eu3+ thin film phosphors on quartz glass substrates, J. Appl. Phys. 92, 5248 (2002)

    Article  CAS  Google Scholar 

  195. J.S. Bae, S.S. Yi, J.H. Kim, K.S. Shim, B.K. Moon, J.H. Jeong, Y.S. Kim: Crystalline-phase-dependent red emission behaviors of Gd2O3:Eu3+ thin-film phosphors, Appl. Phys. A 82, 369–372 (2006)

    Article  CAS  Google Scholar 

  196. W.O. Gordon, J.A. Carter, B.M. Tissue: Long-lifetime luminescence of lanthanide-doped gadolinium oxide nanoparticles for immunoassays, J. Lumin. 108, 339 (2004)

    Article  CAS  Google Scholar 

  197. R. Bazzi, M.A. Flores, C. Louis, K. Lebbou, W. Zhang, C. Dujardin, S. Roux, B. Mercier, G. Ledoux, E. Bernstein, P. Perriat, O. Tillement: Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3,Gd2O3:Eu, and Y2O3:Eu, J. Colloid Interface Sci. 273, 191 (2004)

    Article  CAS  Google Scholar 

  198. H. Chen, J. Zhang, X. Wang, S. Gao, M. Zhang, Y. Ma, Q. Dai, D. Li, S. Kan, G. Zou: The effect of the size of raw Gd(OH)3 precipitation on the crystal structure and PL properties of Gd2O3:Eu, J. Colloid Interface Sci. 297, 130 (2006)

    Article  CAS  Google Scholar 

  199. Y.C. Kang, H.S. Roh, S.B. Park, H.D. Park: Use of LiCl flux in the preparation of Y2O3:Eu phosphor particles by spray pyrolysis, J. Eur. Ceram. Soc. 22, 1661 (2002)

    Article  CAS  Google Scholar 

  200. C. Lin, K. Lin, Y. Li: Sol–gel synthesis and photoluminescent characteristics of Eu3+ doped Gd2O3 nanophosphors, J. Lumin. 126, 795 (2007)

    Article  CAS  Google Scholar 

  201. Y. Tao, G. Zhao, S. Xia: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors, Mater. Res. Bull. 32, 501 (1997)

    Article  CAS  Google Scholar 

  202. L. Sun, J. Yao, C. Liu, C. Liao, C. Yan: Rare earth activated nanosized oxide phosphors: Synthesis and optical properties, J. Lumin. 87–89, 447 (2000)

    Article  Google Scholar 

  203. S. Neeraj, N. Kijima, A.K. Cheetham: Novel red phosphors for solid state lighting; the system Bi x Ln1 − xVO4; Eu3+/Sm3+ (Ln = Y, Gd), Solid State Commun. 131, 65 (2004)

    Article  CAS  Google Scholar 

  204. C. He, Y. Guan, L. Yao, W. Cai, X. Li, Z. Yao: Synthesis and photoluminescence of nano-Y2O3:Eu3+ phosphors, Mater. Res. Bull. 38, 973 (2003)

    Article  CAS  Google Scholar 

  205. M.L. Pang, J. Lin, J. Fu, R.B. Xing, C.X. Luo, Y.C. Han: Preparation, patterning and luminescent properties of nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini sol–gel soft lithography, Opt. Mater. 23, 547 (2003)

    Article  CAS  Google Scholar 

  206. S.C. Sun, B. Murray: Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys. 85, 4325 (1999)

    Article  CAS  Google Scholar 

  207. F.E. Kruis, H. Fissan, A. Peled: Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – a review, J. Aerosol Sci. 29, 511 (1998)

    Article  CAS  Google Scholar 

  208. G. Jia, K. Liu, Y. Zheng, Y. Song, M. Yang, H. You: Highly Uniform Gd(OH)3 and Gd2O3:Eu3+ Nanotubes: Facile Synthesis and Luminescence Properties, J. Phys. Chem. C 113(15), 6050–6055 (2009)

    Article  CAS  Google Scholar 

  209. S. Li, H. Song, H. Yu, S. Lu, X. Bai, G. Pan, Y. Lei, L. Fan, T. Wang: Influence of annealing temperature on photoluminescence characteristics of Gd2O3:Eu/AAO nanowires, J. Lumin. 122/123, 876–878 (2007)

    Article  CAS  Google Scholar 

  210. G. Liu, G. Hong, X. Dong, J. Wang: Preparation and characterization of Gd2O3:Eu3+ luminescence nanotubes, J. Alloys Compd. 466(1/2), 512–516 (2008)

    Article  CAS  Google Scholar 

  211. G. Liu, S. Zhang, X. Dong, J. Wang: Solvothermal synthesis of Gd2O2:Eu3+ luminescent nanowires, J. Nanomater., 365079 (2010)

    Google Scholar 

  212. R.M. Petoral Jr., F. Söderlind, A. Klasson, A. Suska, M.A. Fortin, N. Abrikossova, L. Selegård, P. Käll, M. Engström, K. Uvdal: Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: A bifunctional material with combined fluorescent labeling and MRI contrast agent properties, J. Phys. Chem. C 113, 6913–6920 (2009)

    Article  CAS  Google Scholar 

  213. M. Ou, B. Muteleta, M. Martini, R. Bazzi, S. Roux, G. Ledoux, O. Tillement, P. Perriat: Optimization of the synthesis of nanostructured Tb3+-doped Gd2O3 by in-situ luminescence following up, J. Colloid Interface Sci. 333, 684–689 (2009)

    Article  CAS  Google Scholar 

  214. S. Seo, H. Yang, P.H. Holloway: Controlled shape growth of Eu- or Tb-doped luminescent Gd2O3 colloidal nanocrystals, J. Colloid Interface Sci. 331, 236–242 (2009)

    Article  CAS  Google Scholar 

  215. V. Bedekar, D.P. Dutta, M. Mohapatra, S.V. Godbole, R. Ghildiyal, A.K. Tyagi: Rare earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs, Nanotechnology 20, 125707 (2009)

    Article  CAS  Google Scholar 

  216. V. Bedekar, D.P. Dutta, A.K. Tyagi: White light emission from spin coated Gd2O3:Dy nano phosphors synthesized using polyol technique, J. Nanosci. Nanotechnol. 10, 8234–8238 (2010)

    Article  CAS  Google Scholar 

  217. K.J. Klabunde, C. Mohs: Nanoparticles and nanostructural materials. In: Chemistry of Advanced Materials: An Overview, ed. by L. Interrante, M. Hampden-Smith (Wiley-VCH, New York 1998) p. 271

    Google Scholar 

  218. M.L. Steigerwald, L.E. Brus: Semiconductor crystallites: A class of large molecules, Acc. Chem. Res. 23, 183 (1990)

    Article  CAS  Google Scholar 

  219. A. Henglein: Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 89, 1861 (1989)

    Article  CAS  Google Scholar 

  220. H.J. Fecht: Formation of nanostructures by mechanical attrition. In: Nanomaterials: Synthesis, Properties, and Applications, ed. by A.S. Edelstein, R.C. Cammarata (Institute of Physics, Philadelphia 1996) p. 89

    Google Scholar 

  221. T.P. Martin, U. Naher, H. Schaber, U. Zimmerman: Evidence for a size-dependent melting of sodium clusters, J. Chem. Phys. 100, 2322 (1994)

    Article  CAS  Google Scholar 

  222. K.J. Klabunde, J.V. Stark, O. Koper, C. Mohs, D.G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang: Nanocrystals as stoichiometric reagents with unique surface chemistry, J. Phys. Chem. 100, 12142 (1996)

    Article  CAS  Google Scholar 

  223. R. Richards, W. Li, S. Decker, C. Davidson, O. Koper, V. Zaikovski, A. Volodin, T. Rieker: Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials, J. Am. Chem. Soc. 122, 4921 (2000)

    Article  CAS  Google Scholar 

  224. J. Karch, R. Birringer, H. Gleiter: Ceramics ductile at low temperature, Nature 330, 556 (1987)

    Article  CAS  Google Scholar 

  225. R.P. Andres, R.S. Averback, W.L. Brown, L.E. Brus, W.A. Goddard III., A. Kalder, S.G. Louie, M. Moscovits, P.S. Peercy, S.J. Riley, R.W. Siegel, F. Spaepen, Y. Wang: Research opportunities on clusters and cluster-assembled materials – A Department of Energy, Council on Materials Science Panel Report, J. Mater. Res. 4, 704 (1989)

    Article  CAS  Google Scholar 

  226. A. Pelmenschikov, G. Morosi, A. Gamba, S. Coluccia: A check of quantum chemical molecular models of adsorption on oxides against experimental infrared data, J. Phys. Chem. 99, 15018 (1995)

    Article  CAS  Google Scholar 

  227. J. Ramkumar, R. Shukla, S. Chandramouleeswaran, T. Mukherjee, A.K. Tyagi: Transition metal oxide nanoparticles as potential room temperature sorbents, Nanosci. Nanotechnol. Lett. 4, 693–700 (2012)

    Article  CAS  Google Scholar 

  228. H.D. Gesser, P.C. Goswami: Aerogels and related porous materials, Chem. Rev. 89, 765 (1989)

    Article  CAS  Google Scholar 

  229. J.V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde: Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence, Chem. Mater. 8, 1904 (1996)

    Article  CAS  Google Scholar 

  230. L.V. Interrante, M.J. Hampden-Smith (Eds.): Chemistry of Materials (Wiley-VCH, New York 1998) pp. 1–18

    Google Scholar 

  231. K.J. Klabunde (Ed.): Nanoscale Materials in Chemistry (Wiley Interscience, New York 2001) pp. 1–14, 85–120, 223–262

    Book  Google Scholar 

  232. K.J. Klabunde, R. Richards (Eds.): Nanoscale Materials in Chemistry, 2nd edn. (Wiley, New York 2009) pp. 629–768

    Google Scholar 

  233. C.J. Brinker, G.W. Scherer: Sol-Gel Science (Academic, San Diego 1990) pp. 1–403

    Google Scholar 

  234. V. Grassian (Ed.): Environmental Catalysis (CRC, Boca Raton 2005) pp. 1–3, 391–420

    Google Scholar 

  235. H. Freundlich: Colloid and Capillary Chemistry (Methuen, London 1926)

    Google Scholar 

  236. I. Langmuir: The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  237. S. Lagergren: About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk. Handlingar 4, 1–39 (1898)

    Google Scholar 

  238. Y.S. Ho., G. McKay: Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot. 76B, 183–191 (1998)

    Article  Google Scholar 

  239. Y.S. Ho., G. McKay: The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res. 34, 735–742 (2000)

    Article  CAS  Google Scholar 

  240. G.K. Boreskev: Heterogeneous Catalysis (Nova Publishers, New York 2003) pp. 1–2

    Google Scholar 

  241. G. Ertl: Reaction at Solid Surface (Wiley, Hoboken 2009) pp. 1–3

    Book  Google Scholar 

  242. G. Ertl: Handbook of heterogeneous catalysis (VCH, Weinheim 1997)

    Book  Google Scholar 

  243. T. Murota, T. Hasegawa, S. Aozasa, H. Matsui, M. Motoyama: Production method of cerium oxide with high storage capacity of oxygen and its mechanism, J. Alloys Compd. 193, 298 (1993)

    Article  CAS  Google Scholar 

  244. P. Fornasiero, R. Di Monte, R.G. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani: Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural-properties, J. Catal. 151, 168 (1995)

    Article  CAS  Google Scholar 

  245. M. Ozawa, M. Kimura, A. Isogai: The application of CeZr oxide solid solution to oxygen storage promoters in automotive catalysts, J. Alloys Compd. 193, 73 (1993)

    Article  CAS  Google Scholar 

  246. C. de Leitenburg, A. Trovarelli, J. Lloorca, F. Cavani, G. Bini: The effect of doping CeO2 with zirconium in the oxidation of isobutene, Appl. Catal. A 139, 161 (1996)

    Article  Google Scholar 

  247. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon: Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4, J. Catal. 144, 175 (1993)

    Article  CAS  Google Scholar 

  248. S. Tsubota, T. Nakamura, K. Tanaka, M. Haruta: Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation, Catal. Lett. 56, 131 (1998)

    Article  CAS  Google Scholar 

  249. O. Mitsutaka, N. Shyunichi, T. Susumu, N. Toshiko, A. Masashi, H. Masatake: Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2, Catal. Lett. 51, 53 (1998)

    Article  Google Scholar 

  250. Y. Chen, D. Wu, C. Yeh: Oxidation of carbon monoxide over nanoparticles of cobalt oxides, Rev. Adv. Mater. Sci. 5, 41 (2003)

    CAS  Google Scholar 

  251. M.F. Camellone, S. Fabris: Reaction mechanisms for the CO. Oxidation on Au/CeO2 catalysts: Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms, J. Am. Chem. Soc. 131, 10473 (2009)

    Article  CAS  Google Scholar 

  252. F. Romero-Sarria, L.M.T. Martínez, M.A. Centeno, J.A. Odriozola: Surface dynamics of Au/CeO2 catalysts during CO oxidation, J. Phys. Chem. C 111, 14469 (2007)

    Article  CAS  Google Scholar 

  253. J. Xua, D.R. Mullinsa, H. Overbury: CO desorption and oxidation on CeO2-supported Rh: Evidence for two types of Rh sites, J. Catal. 243, 158 (2006)

    Article  CAS  Google Scholar 

  254. K. Krishna, A. Bueno-Lopez, M. Makkee, J.A. Moulijn: Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2, Appl. Catal. B 75, 189 (2007)

    Article  CAS  Google Scholar 

  255. U. Hennings, R. Reimert: Noble metal catalysts supported on gadolinium doped ceria used for natural gas reforming in fuel cell applications, Appl Cat B 70, 498 (2007)

    Article  CAS  Google Scholar 

  256. A. Tschope, D. Schaadt, R. Birringer, J.Y. Ying: Catalytic properties of nanostructured metal oxides synthesized by inert gas condensation, Nanostruct. Mater. 9, 423 (1997)

    Article  CAS  Google Scholar 

  257. F. Deganello, V. Esposito, M. Miyayama, E.J. Traversa: Cathode performance of nanostructured La1 − aSraCo1 − bFebO3 − x on a Ce0.8Sm0.2O2 electrolyte prepared by citrate-nitrate autocombustion, Electrochem. Soc. 154, A89 (2007)

    Article  CAS  Google Scholar 

  258. F. Deganello, L.F. Lotta, A. Longo, P. Casaletto, M. Scopelitti: Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates, J. Solid State Chem. 179, 3406 (2006)

    Article  CAS  Google Scholar 

  259. J.C. Yu, L.Z. Zhang, J. Lin: Direct sonochemical preparation of high-surface-area nanoporous ceria and ceria-zirconia solid solutions, J. Colloid Interface Sci. 260, 240 (2003)

    Article  CAS  Google Scholar 

  260. T. Tsuzuki, P.G. McCormick: Synthesis of ultrafine ceria powders by mechanochemical processing, J. Am. Ceram. Soc. 84, 1453 (2001)

    Article  CAS  Google Scholar 

  261. H.R. Xu, L. Gao, H.C. Gu, J.K. Guo, D.S. Yan: Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method, J. Am. Ceram. Soc. 85, 139 (2002)

    Article  CAS  Google Scholar 

  262. P.L. Chen, I.W. Chen: Reactive cerium(IV) oxide powders by the homogeneous precipitation method, J. Am. Ceram. Soc. 76, 1577 (1993)

    Article  CAS  Google Scholar 

  263. J.L. Woodhead: Process for preparing aqueous dispersion of ceria and resulting product, US Patent 4231893 (1980)

    Google Scholar 

  264. B. Djuricic, S. Pickering: Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders, J. Eur. Ceram. Soc. 19, 1925 (1999)

    Article  CAS  Google Scholar 

  265. Y.S. Cho, H.D. Glicksman, V.R.W. Amarakoon: Ceramic nanopowders. In: Encylopedia of Nanoscience and Nanotechnology, Vol. 1, ed. by H.S. Nalwa (American Scientific, Valencia 2004) p. 7

    Google Scholar 

  266. K.J. Moreno, G. Mendonza-Suarez, A.F. Fuentes, J. Garcia-Barriocanal, C. Leon, J. Santamaria: Cooperative oxygen ion dynamics in Gd2Ti2 − yZr y O7, Phys. Rev. B 71, 132301 (2005)

    Article  CAS  Google Scholar 

  267. M.T. Weller, R.W. Hughes, J. Rouke, C.S. Knee, J. Reading: The pyrochlore family – A potential panacea for the frustrated perovskite chemist, Dalton Trans., 3032 (2004)

    Google Scholar 

  268. P.K. Moon, R.H. Tuller: Ionic conduction in the Gd2Ti2O7-Gd2Zr2O7 system, Solid State Ionics 28, 470 (1988)

    Article  Google Scholar 

  269. M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, K.E. Sickafus: Oxygen migration in A2B2O7 pyrochlores, Solid State Ionics 140, 201 (2001)

    Article  CAS  Google Scholar 

  270. I. Riess, D. Braunshtein, D.S. Tannhauser: Density and ionic conductivity of sintered (CeO2)0.82(GdO1, 5)0.18, J. Am. Ceram. Soc. 64, 479 (1981)

    Article  CAS  Google Scholar 

  271. J.J. Kingsley, K. Suresh, K.C. Patil: Combustion synthesis of fine-particle metal aluminates, J. Mater. Sci. 25, 1305 (1990)

    CAS  Google Scholar 

  272. S. Bhaduri, S.B. Bhaduri, E. Zhou: Auto ignition synthesis and consolidation of Al2O3–ZrO2 nano/nano composite powders, J. Mater. Res. 13, 156 (1998)

    Article  CAS  Google Scholar 

  273. B.P. Mandal, S.K. Deshpande, A.K. Tyagi: Ionic conductivity enhancement in Gd2Zr2O7 pyrochlore by Nd doping, J. Mater. Res. 23, 911 (2008)

    Article  CAS  Google Scholar 

  274. L.R. Pederson, L.A. Chick, G.J. Exarhos: Method of making metal oxide ceramic powders by using a combustible amino acid compound, US Patent 5114702 (1992)

    Google Scholar 

  275. A. Hara, Y. Hirata, S. Sameshima, N. Matsunaga, T. Horita: Grain size dependence of electrical properties of Gd-doped ceria, J. Ceram. Soc. Jpn. 116, 291 (2008)

    Article  CAS  Google Scholar 

  276. A.G. Belous, K.V. Kravchyk, E.V. Pashkova, O. Bohnke, C. Galven: Influence of the chemical composition on structural properties and electrical conductivity of Y–Ce–ZrO2, Chem. Mater. 19(21), 5179–5184 (2007)

    Article  CAS  Google Scholar 

  277. B.P. Mandal, A. Banerji, V. Sathe, S.K. Deb, K. Tyagi: Order–disorder transition in Nd2 − yGd y Zr2O7 pyrochlore solid solution: An x-ray diffraction and Raman spectroscopic study, J. Solid State Chem. 180, 2643 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rakesh Shukla , Dimple P. Dutta , Jayshree Ramkumar , Balaji P. Mandal or Avesh K. Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Shukla, R., Dutta, D.P., Ramkumar, J., Mandal, B.P., Tyagi, A.K. (2013). Nanocrystalline Functional Oxide Materials. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_13

Download citation

Publish with us

Policies and ethics