Reference Model and Perspective Schemata Inference for Enterprise Data Integration

  • Valéria Magalhães Pequeno
  • João Carlos Moura Pires
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6547)


Sharing and integrating information among multiple heterogeneous and autonomous databases has emerged as a strategic requirement in modern enterprises. We deal with this problem by proposing a declarative approach based on the creation of a reference model and perspective schemata. The former provides a common semantic, while the latter connects schemata. This paper focuses on deduction of new perspective schemata using a proposed inference mechanism. A proof-of-concept prototype, based on Logic Programming, is presented in brief.


Reference Model Data Warehouse Global Schema Origin Schema Inference Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Imhoff, C., Galemmo, N., Geiger, J.G.: Mastering Data Warehouse Design - Relational and Dimensional Techniques. Wiley Publishing, Chichester (2003)Google Scholar
  2. 2.
    Geiger, J.G.: Why build a data model? Information Management Magazine (2009)Google Scholar
  3. 3.
    Moody, D.L.: From enterprise models to dimensional models: A methodology for data warehouse and data mart design. In: Proc. of the Intl. Workshop on Design and Management of Data Warehouses (2000)Google Scholar
  4. 4.
    Inmon, W.H., Imhoff, C., Sousa, R.: Corporate Information Factory, 2nd edn. John Wiley & Sons, Chichester (2001)Google Scholar
  5. 5.
    Inmon, W., Strauss, D., Neushloss, G.: DW 2.0: the architecture for the next generalization of data warehousing. Morgan Kaufmann, San Francisco (2008)Google Scholar
  6. 6.
    Pequeno, V.M., Pires, J.C.G.M.: Using perspective schemata to model the ETL process. In: Intl. Conf. on Management Information Systems, France (June 2009)Google Scholar
  7. 7.
    Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years. In: VLDB, pp. 9–16 (2006)Google Scholar
  8. 8.
    Stumptner, M., Schrefl, M., Grossmann, G.: On the road to behavior-based integration. In: First Asia-Pacific Conf. on Conceptual Modelling, pp. 15–22 (2004)Google Scholar
  9. 9.
    Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A., Tarczy-Hornoch, P.: Data integration and genomic medicine. Journal of Biomedical Informatics 40, 5–13 (2007)CrossRefGoogle Scholar
  10. 10.
    Naidu, P.G., Palakal, M.J., Hartanto, S.: On-the-fly data integration models for biological databases. In: Proc. of the 2007 ACM Symp. on Applied Computing, pp. 118–122. ACM, USA (2007)CrossRefGoogle Scholar
  11. 11.
    Yoakum-Stover, S., Malyuta, T.: Unified architecture for integrating intelligence data. In: DAMA: Europe Conf., UK (2008)Google Scholar
  12. 12.
    Vidal, V.M.P., Lóscio, B.F., Salgado, A.C.: Using correspondence assertions for specifying the semantics of XML-based mediators. In: Workshop on Information Integration on the Web, pp. 3–11 (2001)Google Scholar
  13. 13.
    Ives, Z.G., Knoblock, C.A., Minton, S., Jacob, M., Talukdar, P.P., Tuchinda, R., Ambite, J.L., Muslea, M., Gazen, C.: Interactive data integration through smart copy & paste. In: 4th Biennial Conf. on Innovative Data Systems Research (2009)Google Scholar
  14. 14.
    Mccann, R., Doan, A., Varadarajan, V., Kramnik, E.: Building data integration systems via mass collaboration. In: Intl. Workshop on the Web and Databases, USA (2003)Google Scholar
  15. 15.
    Berger, S., Schrefl, M.: From federated databases to a federated data warehouse system. In: 41st Annual Hawaii Intl. Conf. on System Sciences. IEEE Computer Society, USA (2008)Google Scholar
  16. 16.
    Dori, D., Feldman, R., Sturm, A.: From conceptual models to schemata: An object-process-based data warehouse construction method. Inf. Syst. 33(6), 567–593 (2008)CrossRefGoogle Scholar
  17. 17.
    Malinowski, E., Zimányi, E.: A conceptual model for temporal data warehouses and its transformation to the ER and the object-relational models. Data Knowl. Eng. 64(1), 101–133 (2008)CrossRefGoogle Scholar
  18. 18.
    Pérez, J.M., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: A relevance-extended multi-dimensional model for a data warehouse contextualized with documents. In: Proc. of the 8th ACM Intl. Workshop on Data Warehousing and OLAP, pp. 19–28. ACM, USA (2005)CrossRefGoogle Scholar
  19. 19.
    Golfarelli, M., Maniezzo, V., Rizzi, S.: Materialization of fragmented views in multidimensional databases. Data Knowl. Eng. 49(3), 325–351 (2004)CrossRefGoogle Scholar
  20. 20.
    Husemann, B., Lechtenborger, J., Vossen, G.: Conceptual data warehouse modeling. In: Design and Management of Data Warehouses (2000)Google Scholar
  21. 21.
    Rizzi, S.: Conceptual modeling solutions for the data warehouse. In: Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications (2008); 208–227, copyright, by Information Science Reference, formerly known as Idea Group Reference (an imprint of IGI Global)Google Scholar
  22. 22.
    Wrembel, R.: On a formal model of an object-oriented database with views supporting data materialisation. In: Proc. of the Conf. on Advances in Databases and Information Systems, pp. 109–116 (1999)Google Scholar
  23. 23.
    Franconi, E., Kamble, A.: A data warehouse conceptual data model. In: Proc. of the 16th Intl. Conf. on Scientific and Statistical Database Management, pp. 435–436. IEEE Computer Society, USA (2004)Google Scholar
  24. 24.
    Kamble, A.S.: A conceptual model for multidimensional data. In: Proc. of the 15th on Asia-Pacific Conf. on Conceptual Modelling, pp. 29–38. Australian Computer Society, Inc., Australia (2008)Google Scholar
  25. 25.
    Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R model for the multidimensional paradigm. In: Proc. of the Workshops on Data Warehousing and Data Mining, pp. 105–116 (1999)Google Scholar
  26. 26.
    Tryfona, N., Busborg, F., Christiansen, J.G.B.: starER: a conceptual model for data warehouse design. In: Proc. of the 2nd ACM Intl. Workshop on Data Warehousing and OLAP, pp. 3–8. ACM, USA (1999)CrossRefGoogle Scholar
  27. 27.
    Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional modelling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2005)CrossRefGoogle Scholar
  28. 28.
    Nguyen, T.B., Tjoa, A.M., Wagner, R.R.: An object oriented multidimensional data model for OLAP. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 69–82. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Trujillo, J., Palomar, M., Gómez, J.: Applying object-oriented conceptual modeling techniques to the design of multidimensional databases and OLAP applications. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 83–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Skoutas, D., Simitsis, A.: Designing ETL processes using semantic web technologies. In: DOLAP 2006: Proceedings of the 9th ACM International Workshop on Data Warehousing and OLAP, pp. 67–74. ACM, USA (2006)Google Scholar
  31. 31.
    Calvanese, D., Dragone, L., Nardi, D., Rosati, R., Trisolini, S.M.: Enterprise modeling and data warehousing in TELECOM ITALIA. Inf. Syst. 31(1), 1–32 (2006)CrossRefGoogle Scholar
  32. 32.
    Codd, E.F.: A relational model of data for large shared data banks. Communications of the ACM, 377–387 (1970)Google Scholar
  33. 33.
    Cattell, R.G., Barry, D. (eds.): The Object Database Standard ODMG 3.0. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  34. 34.
    Pequeno, V.M., Pires, J.C.G.M.: A formal object-relational data warehouse model. Technical report, Universidade Nova de Lisboa (November 2007)Google Scholar
  35. 35.
    Pequeno, V.M., Pires, J.C.G.M.: Using perspective schemata to model the ETL process. Technical report, Universidade Nova de Lisboa (2009)Google Scholar
  36. 36.
    Elmasri, R., Navathe, S.B.: Fundamentals of database systems, 5th edn. Addison Wesley, Reading (2006)zbMATHGoogle Scholar
  37. 37.
    Pequeno, V.M., Pires, J.C.G.M.: Reference model and perspective schemata inference for enterprise data integration. Technical report, Universidade Nova de Lisboa (2009)Google Scholar
  38. 38.
    Abreu, S., Nogueira, V.: Using a logic programming language with persistence and contexts. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 38–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  39. 39.
    Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25(3), 38–49 (1992)CrossRefGoogle Scholar
  40. 40.
    Pequeno, V.M., Abreu, S., Pires, J.C.G.M.: Using contextual logic programming language to acess data in warehousing systems. In: 14th Portuguese Conference on Artificial Intelligence, Portugal (October 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Valéria Magalhães Pequeno
    • 1
  • João Carlos Moura Pires
    • 1
  1. 1.CENTRIA, Departamento de Informática, Faculdade de Ciências e Tecnologia, FCTUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations