Elder Care via Intention Recognition and Evolution Prospection

  • Luís Moniz Pereira
  • The Anh Han
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6547)


We explore and exemplify the application in the Elder Care context of the ability to perform Intention Recognition and of wielding Evolution Prospection methods. This is achieved by means of an articulate use of Causal Bayes Nets (for heuristically gauging probable general intentions), combined with specific generation of plans involving preferences (for checking which of such intentions are plausibly being carried out in the specific situation at hand). The overall approach is formulated within a coherent and general logic programming framework and implemented system. The paper recaps required background and illustrates the approach via an extended application example.


Intention Recognition Elder Care Causal Bayes Nets P-Log Evolution Prospection Preferences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pereira, L.M., Han, T.A.: Intention Recognition via Causal Bayes Networks Plus Plan Generation. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS (LNAI), vol. 5816, pp. 138–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Pereira, L.M., Han, T.A.: Evolution Prospection. In: Nakamatsu, K. (ed.) Procs. Intl. Symposium on Intelligent Decision Technologies (KES-IDT 2009). Springer Studies in Computational Intelligence, vol. 199, pp. 51–63 (2009)Google Scholar
  3. 3.
    Pereira, L.M., Han, T.A.: Evolution Prospection in Decision Making. Intelligent Decision Technologies (IDT) 3(3), 157–171 (2009)CrossRefGoogle Scholar
  4. 4.
    Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Han, T.A., Kencana Ramli, C.D.P., Damásio, C.V.: An implementation of extended P-log using XASP. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 739–743. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Theory and Practice of Logic Programming 9(1), 57–144 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Castro, L., Swift, T., Warren, D.S.: XASP: Answer set programming with xsb and smodels,
  8. 8.
    Cesta, A., Pecora, F.: The Robocare Project: Intelligent Systems for Elder Care. In: AAAI Fall Symposium on Caring Machines: AI in Elder Care, USA (2005)Google Scholar
  9. 9.
    Mileo, A., Merico, D., Bisiani, R.: A Logic Programming Approach to Home Monitoring for Risk Prevention in Assisted Living. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 145–159. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Giuliani, M.V., Scopelliti, M., Fornara, F.: Elderly people at home: technological help in everyday activities. In: IEEE International Workshop on In Robot and Human Interactive Communication, pp. 365–370 (2005)Google Scholar
  11. 11.
    Heinze, C.: Modeling Intention Recognition for Intelligent Agent Systems, Doctoral Thesis, the University of Melbourne, Australia (2003),
  12. 12.
    Tahboub, K.A.: Intelligent Human-Machine Interaction Based on Dynamic Bayesian Networks Probabilistic Intention Recognition. J. Intelligent Robotics Systems 45(1), 31–52 (2006)CrossRefGoogle Scholar
  13. 13.
    Schrempf, O.C., Albrecht, D., Hanebeck, U.D.: Tractable Probabilistic Models for Intention Recognition Based on Expert Knowledge. In: Procs. 2007 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS 2007), pp. 1429–1434 (2007)Google Scholar
  14. 14.
    Kautz, H.A., Allen, J.F.: Generalized plan recognition. In: Procs. 1986 Conf. of the American Association for Artificial Intelligence, pp. 32–37. AAAI, Menlo Park (1986)Google Scholar
  15. 15.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming Approach to Knowledge State Planning, II: The \(DLV^{\cal{K}}\) System. Artificial Intelligence 144(1-2), 157–211 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tu, P.H., Son, T.C., Baral, C.: Reasoning and Planning with Sensing Actions, Incomplete Information, and Static Causal Laws using Answer Set Programming. Theory and Practice of Logic Programming 7(4), 377–450 (2007)CrossRefzbMATHGoogle Scholar
  17. 17.
    Glymour, C.: The Mind’s Arrows: Bayes Nets and Graphical Causal Models in Psychology. MIT Press, Cambridge (2001)Google Scholar
  18. 18.
    Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge U.P, Cambridge (2000)zbMATHGoogle Scholar
  19. 19.
    Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The Refined Extension Principle for Semantics of Dynamic Logic Programming. Studia Logica 79(1), 7–32 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic updates of non-monotonic knowledge bases. J. Logic Programming 45(1-3), 43–70 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded semantics for normal logic programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Swift, T.: Tabling for non-monotonic programming. Annals of Mathematics and Artificial Intelligence 25(3-4), 201–240 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    The XSB System Version 3.0 Vol. 2: Libraries, Interfaces and Packages (July 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luís Moniz Pereira
    • 1
  • The Anh Han
    • 1
  1. 1.Centro de Inteligência Artificial (CENTRIA)Universidade Nova de LisboaCaparicaPortugal

Personalised recommendations