Advertisement

Analysis of Air Traffic Track Data with the AutoBayes Synthesis System

  • Johann Schumann
  • Karen Cate
  • Alan Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6564)

Abstract

The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controller. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties.

We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and detection of continuous descent approaches (CDA) can be supported by code generated from compact AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erzberger, H.: CTAS: Computer intelligence for air traffic control in the terminal area. Technical Report NASA TM-103959, NASA (1992)Google Scholar
  2. 2.
    Denery, D.G., Erzberger, H.: The center-tracon automation system: Simulation and field testing. Proceedings of the Advanced Workshop on ATM (ATM 1995), NASA TM-110366 (1995)Google Scholar
  3. 3.
    Coppenberger, R.A., Lanier, R., Sweet, D., Dorsky, S.: Design and development of the en route descent advisor (EDA) for conflict-free arrival metering. In: AIAA Guidance, Navigation, and Control Conference. AIAA-2004-4875 (2004)Google Scholar
  4. 4.
    Slattery, R., Zhao, Y.: Trajectory synthesis for air traffic automation. Journal of Guidance, Control and Dynamics 20, 232–238 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fischer, B., Schumann, J.: AutoBayes: A system for generating data analysis programs from statistical models. J. Functional Programming 13, 483–508 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Schumann, J., Jafari, H., Pressburger, T., Denney, E., Buntine, W., Fischer, B.: AutoBayes program synthesis system: users manual. Technical Report NASA/TM-2008-215366, NASA (2008)Google Scholar
  7. 7.
    Gariel, M., Srivastava, A., Feron, E.: Trajectory clustering and an application to airspace monitoring. In: Conf. on Intelligent Data Understanding (CIDU) (2009)Google Scholar
  8. 8.
    Meyerhoff, N., Wang, G.: Statistical analysis and time series modeling of air traffic operations data from flight service stations and terminal radar approach control facilities: Two case studies. Technical Report ADA 109873, DTIC (1981)Google Scholar
  9. 9.
    Cheeseman, P., Stutz, J.: Bayesian classification (AutoClass): Theory and results. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, pp. 153–180. AAAI Press, Menlo Park (1996)Google Scholar
  10. 10.
    McLachlan, G., Peel, D., Basford, K.E., Adams, P.: The EMMIX software for the fitting of mixtures of normal and t-components. J. Statistical Software 4 (1999)Google Scholar
  11. 11.
    Fraley, C., Raftery, A.E.: MCLUST: Software for model-based clustering, density estimation, and discriminant analysis. Technical Report 415, Department of Statistics, University of Washington (2002)Google Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11 (2009)Google Scholar
  13. 13.
    Buntine, W.L.: Operations for learning with graphical models. J. AI Research 2, 159–225 (1994)Google Scholar
  14. 14.
    Whittle, J., Van Baalen, J., Schumann, J., Robinson, P., Pressburger, T., Penix, J., Oh, P., Lowry, M., Brat, G.: Amphion/NAV: Deductive synthesis of state estimation software. In: Proc. 16th Intl. Conf. Automated Software Engineering, pp. 395–399. IEEE Comp. Soc. Press, Los Alamitos (2001)Google Scholar
  15. 15.
    Ayari, A., Basin, D.: A higher-order interpretation of deductive tableau. J. Symbolic Computation 31, 487–520 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Manna, Z., Waldinger, R.J.: Fundamentals of deductive program synthesis. IEEE Trans. Software Engineering 18, 674–704 (1992)CrossRefGoogle Scholar
  17. 17.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. of the Royal Statistical Society series B 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  19. 19.
    Fischer, B., Hajian, A., Knuth, K., Schumann, J.: Automatic derivation of statistical data analysis algorithms: Planetary nebulae and beyond. In: Proc. 23rd Intl. Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, American Institute of Physics, pp. 276–291 (2003)Google Scholar
  20. 20.
    Hartigan, J.: Clustering Algorithms. Wiley, Chichester (1975)zbMATHGoogle Scholar
  21. 21.
    Brodsky, B.E., Darkhovsky, B.S.: Nonparametric Methods in Change-Point Problems. Kluwer, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  22. 22.
    Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  23. 23.
    Roach, K.: Analysis of American Airlines continuous descent approaches at Dallas/Fort Worth airport. Technical Report NTX_20080522_CDA_Meeting, North Texas Research Station, NTX (2008)Google Scholar
  24. 24.
    Gray, A.G., Fischer, B., Schumann, J., Buntine, W.: Automatic derivation of statistical algorithms: The EM family and beyond. In: Advances in Neural Information Processing Systems, vol. 15, pp. 689–696. MIT Press, Cambridge (2003)Google Scholar
  25. 25.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Johann Schumann
    • 1
  • Karen Cate
    • 2
  • Alan Lee
    • 2
  1. 1.SGT, Inc./ NASA AmesMoffett FieldUSA
  2. 2.NASA AmesMoffett FieldUSA

Personalised recommendations