Advertisement

The First-Order Nominal Link

  • Christophe Calvès
  • Maribel Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6564)

Abstract

We define a morphism from nominal syntax, which supports binding, to standard (first-order) syntax. We use this morphism to extend Paterson and Wegman’s linear first-order unification algorithm in order to deal with terms modulo alpha-equivalence. The nominal unification algorithm obtained is quadratic in time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calvès, C.: Complexity and implementation of nominal algorithms, Ph.D. thesis, King’s College London (2010), http://www.dcs.kcl.ac.uk/pg/calves/thesis.pdf
  2. 2.
    Calvès, C., Fernández, M.: Nominal matching and alpha-equivalence. In: Hodges, W., de Queiroz, R. (eds.) WOLLIC 2008. LNCS (LNAI), vol. 5110, pp. 111–122. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theoretical Computer Science 403(2-3), 285–306 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Clouston, R.A., Pitts, A.M.: Nominal equational logic. Electronic Notes in Theoretical Computer Science 172, 223–257 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fernández, M., Gabbay, M.J.: Nominal rewriting. Information and Computation 205(6), 917–965 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gabbay, M.J., Mathijssen, A.: Nominal (universal) algebra: Equational logic with names and binding. Journal of Logic and Computation 19(6), 1455–1508 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13(3), 341–363 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system. In: Documentation and User’s Manual. INRIA, France (2008)Google Scholar
  9. 9.
    Levy, J., Villaret, M.: Nominal unification from a higher-order perspective. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 246–260. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Proceedings of the 21st International Conference on Rewriting Techniques and Applications, RTA 2010, Edinburgh, Scottland, UK, July 11-13. LIPIcs, vol. 6, pp. 209–226. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  11. 11.
    Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. Journal of Logic and Computation 1(4), 497–536 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Paterson, M.S., Wegman, M.N.: Linear unification. In: Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, pp. 181–186. ACM Press, New York (1976)Google Scholar
  13. 13.
    Peyton Jones, S.L.: The Implementation of Functional Programming Languages. Prentice-Hall International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  14. 14.
    Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information and computation 186(2), 165–193 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Qian, Z.: Unification of higher-order patterns in linear time and space. Journal of Logic and Computation 6(3), 315–341 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders made simple. In: Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming, pp. 263–274. ACM Press, New York (2003)CrossRefGoogle Scholar
  17. 17.
    Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer Science 323(1), 473–498 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christophe Calvès
    • 1
  • Maribel Fernández
    • 1
  1. 1.Department of InformaticsKing’s College LondonStrand, LondonUK

Personalised recommendations