Skip to main content

A Qualitative Reasoning Approach to Measure Consensus

  • Chapter
Book cover Consensual Processes

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 267))

Abstract

This chapter introduces a mathematical framework on the basis of the absolute order-of-magnitude qualitative model. This framework allows to develop a methodology to assess the consensus found among different evaluators who use ordinal scales in group decision-making and evaluation processes. The concept of entropy is introduced in this context and the algebraic structure induced in the set of qualitative descriptions given by evaluators is studied. We prove that it is a weak partial semilattice structure that in some conditions takes the form of a distributive lattice. The definition of the entropy of a qualitatively-described system enables us, on one hand, to measure the amount of information provided by each evaluator and, on the other hand, to consider a degree of consensus among the evaluation committee. The methodology presented is able of managing situations where the assessment given by experts involves different levels of precision. In addition, when there is no consensus within the group decision, an automatic process measures the effort necessary to reach said consensus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennet, C., Gács, P., Ming, L., Vitányi, M., Zurek, W.: Information distance. In: Proc. 25th ACM Symp. Theory of Comput., pp. 21–30 (1993)

    Google Scholar 

  2. Birkhoff, G.: Lattice Theory. American Mathematical Society (Colloquium Publications) (1967)

    Google Scholar 

  3. Boujelben, M.A., De Smet, Y., Frikha, A., Chabchoub, H.: Building a binary outranking relation in uncertain, imprecise and multi-experts contexts: The application of evidence theory. International Journal of Approximate Reasoning 50(8), 1259–1278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cabrerizo, F., Alonso, E., Herrera-Viedma, E.: A consensus model for group decision making problems with unbalanced fuzzy linguistic information. International Journal of Information Technology & Decision Making 8(1), 109–131 (2009)

    Article  MATH  Google Scholar 

  5. Cabrerizo, F., Moreno, J., Pérez, J., Herrera-Viedma, E.: Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Computing 14(5), 451–463 (2010)

    Article  Google Scholar 

  6. Chiclana, F., Mata, F., Martínez, L., Herrera-Viedma, E., Alonso, S.: Integration of a consistency control module within a consensus model. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 16(1), 35–53 (2008)

    Article  MathSciNet  Google Scholar 

  7. Dague, P.: Numeric reasoning with relative orders of magnitude. In: AAAI Conference, Washington, pp. 541–547 (1993)

    Google Scholar 

  8. Dubois, D., Prade, H.: Properties of measures of information in evidence and possibility theories. Fuzzy Sets and Systems 100, 35–49 (1999)

    Article  Google Scholar 

  9. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple valued logics: A clarification. Annals of Mathematics and Artificial Intelligence 32, 35–66 (2001)

    Article  MathSciNet  Google Scholar 

  10. Eklund, P., Rusinowski, A., De Swart, H.: Consensus reaching in committees. European Journal of Operational Research 178, 185–193 (2007)

    Article  MATH  Google Scholar 

  11. Herrera, F., Herrera-Viedma, E., Verdegay, J.: A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems (78) 73–87 (1996)

    Article  MathSciNet  Google Scholar 

  12. Herrera, F., Herrera-Viedma, E., Verdegay, J.: A rational consensus model in group decision making using linguistic assessments. Fuzzy Sets and Systems (81) 31–49 (1997)

    Article  Google Scholar 

  13. Forbus, K.: Qualitative process theory. Artificial Intelligence 24, 85–158 (1984)

    Article  Google Scholar 

  14. Forbus, K.: Qualitative Reasoning. CRC Hand-book of Computer Science and Engineering. CRC Press, Boca Raton (1996)

    Google Scholar 

  15. Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (1998)

    MATH  Google Scholar 

  16. Halmos, P.R.: Measure Theory. Springer, Heidelberg (1974)

    MATH  Google Scholar 

  17. Herrera-Viedma, E., Alonso, S., Chiclana, F., Herrera, F.: A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Transaccions on Fuzzy Systems 15(5), 863–877 (2007)

    Article  Google Scholar 

  18. Hu, Y., Dawson, J., Ansell, J.: A framework for retail performance measurement. In: An application of resource advantage theory of competition. Tech. rep., School of Management and Echonomics, the University of Edimburgh (2007)

    Google Scholar 

  19. Jiang, Y.: An approach to group decision-making based on interval fuzzy preference relations. Journal of Systems Science and Systems Engineering 16(1), 113–120 (2007)

    Article  Google Scholar 

  20. Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decission making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems 49, 21–31 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kalagnanam, J., Simon, H., Iwasaki, Y.: The mathematical bases for qualitative reasoning. In: IEEE Expert, pp. 11–19. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  22. Klir, G.: Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like? Fuzzy Sets and Systems 24(2), 141–160 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Klir, G., Smith, R.: On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence 32, 5–33 (2001)

    Article  MathSciNet  Google Scholar 

  24. Kuipers, B.: Making sense of common sense knowledge. Ubiquity 4(45) (2004)

    Google Scholar 

  25. Martínez, L., Montero, J.: Challenges for improving consensus reaching process in collective decisions. New Mathematics and Natural Computation 3(2), 203–217 (2007)

    Article  MATH  Google Scholar 

  26. Mata, F., Martínez, L., Herrera-Viedma, E.: An adaptive consensus support model for group decision making problems in a multi-granular fuzzy linguistic context. IEEE Transaccions on Fuzzy Systems 17(2), 279–290 (2009)

    Article  Google Scholar 

  27. Missier, A., Piera, N., Travé, L.: Order of magnitude algebras: a survey. Revue d’Intelligence Artificielle 3(4), 95–109 (1989)

    Google Scholar 

  28. Ngwenyama, O., Bryson, N., Mobolurin, A.: Supporting facilitation in group support systems: Techniques for analyzing consensus relevant data. Decision Support Systems 16, 155–168 (1996)

    Article  Google Scholar 

  29. Roselló, L., Prats, F., Sánchez, M., Agell, N.: A definition of entropy based on qualitative descriptions. In: Bradley, E., Travé-Massuyés, L. (eds.) 22nd International Workshop on Qualitative Reasoning (QR 2008), University of Boulder, Colorado (2008)

    Google Scholar 

  30. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  31. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  32. Struss, P.: Mathematical aspects of qualitative reasoning. AI in Engineering 3(3), 156–169 (1988)

    Google Scholar 

  33. Travé-Massuyès, L., Dague, P. (eds.): Modèles et raisonnements qualitatifs. Hermes Science Publications, Lavoisier (2003)

    Google Scholar 

  34. Travé-Massuyès, L., Piera, N.: The orders of magnitude models as qualitative algebras. In: 11th IJCAI, pp. 1261–1266 (1989)

    Google Scholar 

  35. Xie, G., Zhang, J., Lai, K., Yu, L.: Variable precision rough set for group decision making: An application. International Journal of Approximate Reasoning 49(2), 331–343 (2008)

    Article  MATH  Google Scholar 

  36. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roselló, L., Prats, F., Agell, N., Sánchez, M. (2011). A Qualitative Reasoning Approach to Measure Consensus. In: Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S. (eds) Consensual Processes. Studies in Fuzziness and Soft Computing, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20533-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20533-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20532-3

  • Online ISBN: 978-3-642-20533-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics