Skip to main content

Aesthetic Classification and Sorting Based on Image Compression

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6625)

Abstract

One of the problems in evolutionary art is the lack of robust fitness functions. This work explores the use of image compression estimates to predict the aesthetic merit of images. The metrics proposed estimate the complexity of an image by means of JPEG and Fractal compression. The success rate achieved is 72.43% in aesthetic classification tasks of a problem belonging to the state of the art. Finally, the behavior of the system is shown in an image sorting task based on aesthetic criteria.

Keywords

  • Support Vector Machine
  • Fractal Compression
  • Image Compression
  • Grayscale Image
  • Aesthetic Quality

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20520-0_40
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-20520-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnheim, R.: Art and Visual Perception, a psychology of the creative eye. Faber and Faber, London (1956)

    Google Scholar 

  2. Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1932)

    MATH  Google Scholar 

  3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  4. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Eysenck, H.J.: The empirical determination of an aesthetic formula. Psychological Review 48, 83–92 (1941)

    CrossRef  Google Scholar 

  6. Eysenck, H.J.: The experimental study of the ’Good Gestalt’ - A new approach. Psychological Review 49, 344–363 (1942)

    CrossRef  Google Scholar 

  7. Fisher, Y. (ed.): Fractal Image Compression: Theory and Application. Springer, London (1995)

    Google Scholar 

  8. Graves, M.: Design Judgment Test. The Psychological Corporation, New York (1948)

    Google Scholar 

  9. Greenfield, G., Machado, P.: Simulating artist and critic dynamics - an agent-based application of an evolutionary art system. In: Dourado, A., Rosa, A.C., Madani, K. (eds.) IJCCI, pp. 190–197. INSTICC Press (2009)

    Google Scholar 

  10. Ke, Y., Tang, X., Jing, F.: The Design of High-Level Features for Photo Quality Assessment. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 419–426 (2006)

    Google Scholar 

  11. Luo, Y., Tang, X.: Photo and video quality evaluation: Focusing on the subject. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 386–399. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  12. Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–229. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  13. Machado, P., Romero, J., Manaris, B.: Experiments in Computational Aesthetics. In: The Art of Artificicial Evolution. Springer, Heidelberg (2007)

    Google Scholar 

  14. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics: An iterative approach to stylistic change in evolutionary art. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 381–415. Springer, Heidelberg (2007)

    Google Scholar 

  15. Machado, P., Romero, J., Santos, A., Cardoso, A., Manaris, B.: Adaptive critics for evolutionary artists. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 435–444. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  16. Meier, N.C.: Art in human affairs. McGraw-Hill, New York (1942)

    Google Scholar 

  17. Moles, A.: Theorie de l’information et perception esthetique, Denoel (1958)

    Google Scholar 

  18. Tong, H., Li, M., Zhang, H., He, J., Zhang, C.: Classification of Digital Photos Taken by Photographers or Home Users. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM (1). LNCS, vol. 3332, pp. 198–205. Springer, Heidelberg (2004)

    Google Scholar 

  19. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with java implementations. SIGMOD Rec. 31(1), 76–77 (2002)

    CrossRef  Google Scholar 

  20. Wong, L., Low, K.: Saliency-enhanced image aesthetics class prediction. In: ICIP 2009, pp. 997–1000. IEEE, Los Alamitos (2009)

    CrossRef  Google Scholar 

  21. Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann, K.U., Soyez, T., Schmalzl, M., Sommer, T., et al.: SNNS: Stuttgart Neural Network Simulator User Manual, version 4.2. Tech. Rep. 3/92, University of Stuttgart, Stuttgart (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romero, J., Machado, P., Carballal, A., Osorio, O. (2011). Aesthetic Classification and Sorting Based on Image Compression. In: , et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20520-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20520-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20519-4

  • Online ISBN: 978-3-642-20520-0

  • eBook Packages: Computer ScienceComputer Science (R0)