Skip to main content

Evolving Textures from High Level Descriptions: Gray with an Accent Color

  • Conference paper
  • 1411 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6625)

Abstract

This paper describes a prototype evolutionary texture synthesis tool meant to assist a designer or artist by automatically discovering many candidate textures that fit a given stylistic description. The textures used here are small color images, created by procedural texture synthesis. This prototype uses a single stylistic description: a textured gray image with a small amount of color accent. A hand-written prototype fitness function rates how well an image meets this description. Genetic programming uses the fitness function to evolve programs written in a texture synthesis language. A tool like this can automatically generate a catalog of variations on the given theme. A designer could then scan through these to pick out those that seem aesthetically interesting. Their procedural “genetic” representation would allow them to be further adjusted by interactive evolution. It also allows re-rendering them at arbitrary resolutions and provides a way to store them in a highly compressed form allowing lossless reconstruction.

Keywords

  • texture synthesis
  • evolutionary computation
  • genetic programming
  • GP
  • evolutionary art
  • design
  • tool

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20520-0_39
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-20520-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsing, R.: Genetic Programming: Evolution of MonaLisa (2008), http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/

  2. Dawkins, R.: The Blind Watchmaker. W. W. Norton, New York (1986)

    Google Scholar 

  3. den Heijer, E., Eiben, A.E.: Using Aesthetic Measures to Evolve Art. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  4. den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  5. DiPaola, S., Gabora, L.: Incorporating characteristics of human creativity into an evolutionary art algorithm. Genetic Programming and Evolvable Machines 10(2), 97–110 (2009)

    CrossRef  Google Scholar 

  6. Draves, S.: The Electric Sheep and their Dreams in High Fidelity. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering (NPAR 2006), pp. 7–9. ACM, New York (2006), http://electricsheep.org/

    CrossRef  Google Scholar 

  7. Gagné, C., Parizeau, M.: Genericity in Evolutionary Computation Software Tools: Principles and Case-Study. International Journal on Artificial Intelligence Tools 15(2), 173–194 (2006)

    CrossRef  Google Scholar 

  8. Galanter, P.: The Problem with Evolutionary Art Is... In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  9. Hertzmann, A.: Paint By Relaxation. In: Proceedings of the Computer Graphics International Conference, pp. 47–55. IEEE Computer Society, Los Alamitos (2001)

    Google Scholar 

  10. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2), 199–230 (1995)

    CrossRef  Google Scholar 

  11. Open BEAGLE, http://beagle.gel.ulaval.ca/

  12. Reynolds, C.: Texture Synthesis Diary (2010), http://www.red3d.com/cwr/texsyn/diary.html

  13. Reynolds, C.: Interactive Evolution of Camouflage. In: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems (ALife XII). MIT Press, Cambridge (2010), http://www.red3d.com/cwr/iec/

    Google Scholar 

  14. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of SIGGRAPH 1991, pp. 319–328. ACM, New York (1991)

    Google Scholar 

  15. Stanley, K.: Compositional Pattern Producing Networks: A Novel Abstraction of Development. Genetic Programming and Evolvable Machines 8(2), 131–162 (2007)

    CrossRef  Google Scholar 

  16. Wiens, A.L., Ross, B.J.: Gentropy: Evolutionary 2D Texture Generation. Computers and Graphics Journal 26, 75–88 (2002)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reynolds, C. (2011). Evolving Textures from High Level Descriptions: Gray with an Accent Color. In: , et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20520-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20520-0_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20519-4

  • Online ISBN: 978-3-642-20520-0

  • eBook Packages: Computer ScienceComputer Science (R0)