Skip to main content

Combining Structural Analysis and Multi-Objective Criteria for Evolutionary Architectural Design

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6625)

Abstract

This study evolves and categorises a population of conceptual designs by their ability to handle physical constraints. The design process involves a trade-off between form and function. The aesthetic considerations of the designer are constrained by physical considerations and material cost. In previous work, we developed a design grammar capable of evolving aesthetically pleasing designs through the use of an interactive evolutionary algorithm. This work implements a fitness function capable of applying engineering objectives to automatically evaluate designs and, in turn, reduce the search space that is presented to the user.

Keywords

  • Pareto Front
  • Evolutionary Design
  • Multiobjective Evolutionary Algorithm
  • Bridge Design
  • Grammatical Evolution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20520-0_21
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-20520-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banzhaf, W.: Interactive evolution. In: Back, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, ch. C2.9, pp. 1–6. IOP Publishing Ltd., Oxford University Press (1997)

    Google Scholar 

  2. British Standards Institution: BS EN 338-2003: Structural Timber Strength Classes. BSI, London (2003)

    Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  4. Fenton, M.: Analysis of Timber Structures Created Using A G.E-Based Architectural Design Tool. Master’s thesis, University College Dublin, Ireland (2010)

    Google Scholar 

  5. Frey, P.J.: MEDIT:interactive mesh visualization. 0 RT-0253, INRIA (December 2001), http://hal.inria.fr/inria-00069921/en/

  6. Generative Components, http://www.bentley.com/getgc/

  7. Gero, J.S.: Creativity, emergence and evolution in design. Knowledge-Based Systems 9(7), 435–448 (1996)

    CrossRef  Google Scholar 

  8. Glaylord, E., Glaylord, C.: Structural engineering handbook. McGraw-Hill, New York (1979)

    Google Scholar 

  9. Grasshopper, Generative Modeling with Rhino, http://www.grasshopper3d.com/

  10. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkx. In: Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp. 11–15 (2008)

    Google Scholar 

  11. Hoeffler, A., Leysner, U., Weidermann, J.: Optimization of the layout of trusses combining strategies based on Mitchels theorem and on biological principles of evolution. In: Proceeding of the 2nd Symposium on Structural Optimisation, Milan, Italy (1973)

    Google Scholar 

  12. Hornby, G.S.: Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design. In: Proceedings of GECCO 2005 (2005)

    Google Scholar 

  13. Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical design. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, pp. 600–607. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  14. Kicinger, R., Arciszewski, T., DeJong, K.: Evolutionary design of steel structures in tall buildings. Journal of Computing in Civil Engineering 19(3), 223–238 (2005)

    CrossRef  Google Scholar 

  15. Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83(23-24), 1943–1978 (2005)

    CrossRef  Google Scholar 

  16. Link to the bridge grammar, http://i.imgur.com/0vsDh.png

  17. McDermott, J., Byrne, J., Swafford, J.M., O’Neill, M., Brabazon, A.: Higher-order functions in aesthetic EC encodings. In: 2010 IEEE World Congress on Computational Intelligence, pp. 2816–2823. IEEE Press, Barcelona (2010)

    Google Scholar 

  18. O’Neill, M.: Automatic Programming in an Arbitrary Language: Evolving Programs with Grammatical Evolution. Ph.D. thesis, University Of Limerick, Ireland (2001)

    Google Scholar 

  19. O’Neill, M., McDermott, J., Swafford, J.M., Byrne, J., Hemberg, E., Shotton, E., McNally, C., Brabazon, A., Hemberg, M.: Evolutionary design using grammatical evolution and shape grammars: Designing a shelter. International Journal of Design Engineering (in press)

    Google Scholar 

  20. O’Reilly, U.M., Hemberg, M.: Integrating generative growth and evolutionary computation for form exploration. Genetic Programming and Evolvable Machines 8(2), 163–186 (2007), special issue on developmental systems

    CrossRef  Google Scholar 

  21. San Lee’s Free Finite Element Analysis, http://slffea.sourceforge.net/

  22. Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Automation in Construction 14(2), 253–264 (2005)

    CrossRef  Google Scholar 

  23. Shea, K., Smith, I., et al.: Improving full-scale transmission tower design through topology and shape optimization. Journal of Structural Engineering 132, 781 (2006)

    CrossRef  Google Scholar 

  24. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proc. of the IEEE 89(9), 1275–1296 (2001)

    CrossRef  Google Scholar 

  25. Topping, B., Leite, J.: Parallel genetic models for structural optimization. Engineering Optimization 31(1), 65–99 (1988)

    CrossRef  Google Scholar 

  26. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evolutionary Computation 3(4), 257–271 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Byrne, J. et al. (2011). Combining Structural Analysis and Multi-Objective Criteria for Evolutionary Architectural Design. In: , et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20520-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20520-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20519-4

  • Online ISBN: 978-3-642-20520-0

  • eBook Packages: Computer ScienceComputer Science (R0)