On the Performance and Convergence Properties of Hybrid Intelligent Schemes: Application on Portfolio Optimization Domain

  • Vassilios Vassiliadis
  • Nikolaos Thomaidis
  • George Dounias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6625)


Hybrid intelligent algorithms, especially those who combine nature-inspired techniques, are well known for their searching abilities in complex problem domains and their performance. One of their main characteristic is that they manage to escape getting trapped in local optima. In this study, two hybrid intelligent schemes are compared both in terms of performance and convergence ability in a complex financial problem. Particularly, both algorithms use a type of genetic algorithm for asset selection and they differ on the technique applied for weight optimization: the first hybrid uses a numerical function optimization method, while the second one uses a continuous ant colony optimization algorithm. Results indicate that there is great potential in combining characteristics of nature-inspired algorithms in order to solve NP-hard optimization problems.


Genetic Algorithm Continuous ACO Portfolio Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Mathematical Programming 89(1), 149–185 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Giannakouris, G., Vassiliadis, V., Dounias, G.: Experimental Study on a Hybrid Nature-Inspired Algorithm for Financial Portfolio Optimization. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS (LNAI), vol. 6040, pp. 101–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Holland, J.H.: Genetic Algorithms. Scientific American, 66–72 (1992)Google Scholar
  4. 4.
    Jeurissen, R., Berg, J.: Optimized index tracking using a hybrid genetic algorithm. In: IEEE Congress on Evolutionary Computation, pp. 2327–2334 (2008)Google Scholar
  5. 5.
    Kuhn, J.: Optimal risk-return tradeoffs of commercial banks and the suitability of profitability measures for loan portfolios. Springer, Berlin (2006)zbMATHGoogle Scholar
  6. 6.
    Maringer, D., Kelleler, H.: Optimization of Cardinality Constrained Portfolios with a Hybrid Local Search Algorithm. OR Spectrum 25, 481–495 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sharpe, W.F.: The Sharpe ratio. Journal of Portfolio Management, 49–58 (1994)Google Scholar
  8. 8.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European Journal of Operational Research 185, 1155–1173 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Thomaidis, N.S., Angelidis, T., Vassiliadis, V., Dounias, G.: Active Portfolio Management with Cardinality Constraints: An Application of Particle Swarm Optimization. New Mathematics and Natural Computation, Working Paper (2008)Google Scholar
  10. 10.
    Vassiliadis, V., Thomaidis, N., Dounias, G.: Active Portfolio Management under a Downside Risk Framework: Comparison of a Hybrid Nature – Inspired Scheme. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 702–712. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vassilios Vassiliadis
  • Nikolaos Thomaidis
  • George Dounias

There are no affiliations available

Personalised recommendations