Skip to main content

Mining Triadic Association Rules from Ternary Relations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 6628)

Abstract

Ternary and more generally n-ary relations are commonly found in real-life applications and data collections. In this paper, we define new notions and propose procedures to mine closed tri-sets (triadic concepts) and triadic association rules within the framework of triadic concept analysis. The input data is represented as a formal triadic context of the form \(\mathbb{K}:=(K_1, K_2, K_3, Y)\), where K 1, K 2 and K 3 are object, attribute and condition sets respectively, and Y is a ternary relation between the three sets. While dyadic association rules represent links between two groups of attributes (itemsets), triadic association rules can take at least three distinct forms. One of them is the following: A \({\underrightarrow{c}}\) D, where A and D are subsets of K 2, and C is a subset of K 3. It states that A implies D under the conditions in C. In particular, the implication holds for any subset in C.

The benefits of triadic association rules of this kind lie in the fact that they represent patterns in a more compact and meaningful way than association rules that can be extracted for example from the formal (dyadic) context \(\mathbb{K}^{(1)}:= (K_1, K_2 \times K_3, Y^{(1)}) \text{ with } (a_i, (a_j, a_k)) \in Y^{(1)} : \iff (a_i, a_j, a_k) \in Y.\)

Keywords

  • Association Rule
  • Concept Lattice
  • Formal Concept Analysis
  • Hasse Diagram
  • Ternary Relation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20514-9_16
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-20514-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Baixeries, J., Szathmary, L., Valtchev, P., Godin, R.: Yet a faster algorithm for building the hasse diagram of a concept lattice. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 162–177. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  3. Biedermann, K.: How triadic diagrams represent conceptual structures. In: ICCS 1997, pp. 304–317 (1997)

    Google Scholar 

  4. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.-F.: Closed patterns meet -ary relations. TKDD 3(1) (2009)

    Google Scholar 

  5. Ganter, B., Obiedkov, S.A.: Implications in triadic formal contexts. In: ICCS, pp. 186–195 (2004)

    Google Scholar 

  6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer-Verlag New York, Inc., Heidelberg (1999) (Translator-C. Franzke)

    Google Scholar 

  7. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines 95(1), 5–18 (1986)

    Google Scholar 

  8. Hamrouni, T., Valtchev, P., Yahia, S.B., Nguifo, E.M.: About the lossless reduction of the minimal generator family of a context. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 130–150. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  9. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias - an algorithm for mining iceberg tri-lattices. In: ICDM, pp. 907–911 (2006)

    Google Scholar 

  10. Ji, L., Tan, K.-L., Tung, A.K.H.: Mining frequent closed cubes in 3d datasets. In: VLDB, pp. 811–822 (2006)

    Google Scholar 

  11. Kryszkiewicz, M., Gajek, M.: Concise representation of frequent patterns based on generalized disjunction-free generators. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 159–171. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  12. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: ICCS, pp. 32–43 (1995)

    Google Scholar 

  13. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Informatique et Sciences Humaines 29(113), 35–55 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Nguyen, K.N.T., Cerf, L., Plantevit, M., Boulicaut, J.-F.: Discovering inter-dimensional rules in dynamic graphs. In: Proc. Workshop on Dynamic Networks and Knowledge Discovery DYNAK 2010 co-located with ECML/PKDD 2010, Barcelona, pp. 5–16 (2010)

    Google Scholar 

  15. Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 217–227 (2002)

    CrossRef  MATH  Google Scholar 

  16. Pasquier, N., Bastide, Y., Taouil, T., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Constructing iceberg lattices from frequent closures using generators. In: Boulicaut, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 136–147. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  18. Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Wille, R.: The basic theorem of triadic concept analysis. Order 12(2), 149–158 (1995)

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Missaoui, R., Kwuida, L. (2011). Mining Triadic Association Rules from Ternary Relations. In: Valtchev, P., Jäschke, R. (eds) Formal Concept Analysis. ICFCA 2011. Lecture Notes in Computer Science(), vol 6628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20514-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20514-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20513-2

  • Online ISBN: 978-3-642-20514-9

  • eBook Packages: Computer ScienceComputer Science (R0)