Skip to main content

Abstract

Amaranths were a fundamental crop of pre-Columbian times and currently are an attractive alternative for crop production in dry and semi-dry areas where major crops perform poorly. To be competitive, amaranth cultivars should be improved on traits where other crops have made significant gains. Some of these traits may be found today or may be selected in the future in their very successful relatives, the Amaranthus weeds. This chapter attempts to present the research conducted on amaranth weeds in a way thought useful for amaranth breeders. Emphasis is placed on gene flow research as an important aspect when considering the availability of interspecific gene pools. We discuss the use and findings with early molecular marker technologies, and we explore the possibilities presented by the increasing genomic resources being generated with both domesticated and non-domesticated Amaranthus species. Also, a brief section is included discussing the evolution of herbicide resistance in Amaranthus weeds, and its potential relevance to the domesticated species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baltensperger DD, Weber LE, Nelson LA (1992) Registration of ‘Plainsman’ grain amaranth. Crop Sci 32:1510–1511

    Article  Google Scholar 

  • Basu C, Halfhill MD, Mueller TC, Stewart NC (2004) Weed genomics: new tools to understand weed biology. Trends Plant Sci 9:391–398

    Article  PubMed  CAS  Google Scholar 

  • Bejosano FP, Corke H (1998) Protein quality evaluation of Amaranthus wholemeal flours and protein concentrates. J Sci Food Agric 76:100–106

    Article  CAS  Google Scholar 

  • Brenner DM, Widrlechner MP (1998) Amaranthus seed regeneration in plastic tents in greenhouses. FAO Plant Genet Resour Newsl 116:1–4

    Google Scholar 

  • Brenner DM, Baltensperger DD, Kulakow PA, Lehmann JW, Myers RL, Slabbert MM, Sleugh BB (2000) Genetic resources and breeding in Amaranthus. In: Janick J (ed) Plant breeding reviews, vol 19. Wiley, New York, USA, pp 227–285

    Google Scholar 

  • Budin JT, Breene WM, Putnam DH (1996) Some compositional properties of seeds and oils of eight Amaranthus species. J Am Chem Soc 73:475–481

    Article  CAS  Google Scholar 

  • Chan KF, Sun M (1997) Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor Appl Genet 95:865–873

    Article  CAS  Google Scholar 

  • Costea M, Tardif FJ (2003) Conspectus and notes on the genus Amaranthus (Amaranthaceae) in Canada. Rhodora 105:260–281

    Google Scholar 

  • Culpepper AS, Grey TL, Vencill WK, Kichler JM, Webster TM, Brown SM, York AC, Davis JW, Hanna WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620–626

    Article  CAS  Google Scholar 

  • Culpepper AS, Whitaker JR, MacRae AW, York AC (2008) Distribution of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005–2006. J Cotton Sci 12:306–310

    Google Scholar 

  • Grant WF (1959) Cytogenetic studies in AmaranthusIII. Chromosome numbers and phylogenetic aspects. Can J Genet Cytol 1:313–328

    Google Scholar 

  • Greizerstein EJ, Poggio L (1995) Meiotic studies of spontaneous hybrids of Amaranthus: genome analysis. Plant Breed 114:448–450

    Article  Google Scholar 

  • Grubben GJ, van Sloten DH (1981) Genetic resources of amaranths: a global plan of action. International Board of Plant Genetic Resources, Rome, Italy

    Google Scholar 

  • Hauptli H, Jain S (1984) Genetic structure of landrace populations of the New World amaranths. Euphytica 33:875–884

    Article  Google Scholar 

  • Heap I (2010) The international survey of herbicide resistant weeds. http://www.weedscience.com. Accessed 29 June 2010

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1991) The world’s worst weeds: distribution and biology. Krieger, Malabar, FL, USA

    Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. Wiley, New York, NY, USA

    Google Scholar 

  • Jofre-Garfias AE, Villegas-Sepúlveda N, Cabrera-Ponce JL, Adame-Alvarez RM, Herrera-Estrella L, Simpson J (1997) Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Rep 16:847–852

    Article  CAS  Google Scholar 

  • Kauffman CS (1992) Realizing the potential of grain amaranth. Food Rev Int 8:5–21

    Article  Google Scholar 

  • Khoshoo TN, Pal M (1972) Cytogenetic patterns in Amaranthus. Chrom Today 3:259–267

    Google Scholar 

  • Kirkpatrick BA (1995) Interspecies relationships within the genus Amaranthus (Amaranthaceae). PhD Dissertation, Texas A&M University, College Station, TX, USA

    Google Scholar 

  • Lanoue KZ, Wolf PG, Browning S, Hood EE (1996) Phylogenetic analysis of restriction site variation in wild and cultivated Amaranthus species (Amaranthaceae). Theor Appl Genet 93:722–732

    Article  CAS  Google Scholar 

  • Lee JR, Hong GY, Dixit A, Chung JW, Ma KH, Lee JH, Kang HK, Cho YH, Gwag JG, Park YJ (2008) Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. Conserv Genet 9:243–246

    Article  CAS  Google Scholar 

  • Lee RM, Thimmapuram J, Thinglum KA, Gong G, Hernandez AG, Wright CL, Kim RW, Mikel MA, Tranel PJ (2009) Sampling the waterhemp (Amaranthus tuberculatus) genome using pyrosequencing technology. Weed Sci 57:463–469

    Article  CAS  Google Scholar 

  • Legleiter TR, Bradley KW (2008) Glyphosate and multiple herbicide resistance in waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci 56:582–587

    Article  CAS  Google Scholar 

  • Lehmann JW, Clark RL, Frey KJ (1991) Biomass heterosis and combining ability in interspecific and intraspecific matings of grain amaranths. Crop Sci 31:1111–1116

    Article  Google Scholar 

  • Mallory MA, Hall RV, Mcnabb AR, Pratt DB, Jellen EN, Maughan PJ (2008) Development and characterization of microsatellite markers for the grain amaranths. Crop Sci 48:1098–1106

    Article  CAS  Google Scholar 

  • Maughan PJ, Sisneros N, Luo M, Kudrna D, Ammiraju JSS, Wing RA (2008) Construction of an Amaranthus hypochondriacus bacterial artificial chromosome library and genomic sequencing of herbicide target genes. Crop Sci 48:S85–S94

    Article  CAS  Google Scholar 

  • Mosyakin SL, Robertson KR (2003) Amaranthus. In: Flora of North America. North of Mexico. Oxford University Press, New York, USA

    Google Scholar 

  • Murray MJ (1940) The genetics of sex determination in the family Amaranthaceae. Genetics 25:409–431

    PubMed  CAS  Google Scholar 

  • Norsworthy JK, Griffith GM, Scott RC, Smith KL, Oliver LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108–113

    Article  CAS  Google Scholar 

  • Pal M, Khoshoo TN (1972) Evolution and improvement of cultivated amaranths. V. Inviability, weakness, and sterility in hybrids. J Hered 73:467

    Google Scholar 

  • Pal M, Khoshoo TN (1973) Evolution and improvement of cultivated amaranths VII. Cytogenetic relationships in vegetable amaranths. Theor Appl Genet 43:343–350

    Article  Google Scholar 

  • Pal M, Pandey RM, Khoshoo TN (1982) Evolution and improvement of cultivated amaranths. J Hered 73:353–356

    Google Scholar 

  • Paredes-López O (1994) Amaranth: biology, chemistry, and technology. CRC, Boca Raton, FL, USA

    Google Scholar 

  • Patzoldt WL, Tranel PJ, Hager AG (2005) A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci 53:30–36

    Article  CAS  Google Scholar 

  • Patzoldt WL, Hager AG, McCormic JS, Tranel PJ (2006) A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci USA 103:12329–12334

    Article  PubMed  CAS  Google Scholar 

  • Pratt DB, Clark LG (2001) Amaranthus rudis and A. tuberculatus – one species or two? J Torr Bot Soc 128:282–296

    Article  Google Scholar 

  • Ranade SA, Kumar A, Goswami M, Farooqui N, Sane PV (1997) Genome analysis of amaranths: determination of inter- and intra-species variations. J Biosci 22:457–464

    Article  Google Scholar 

  • Sauer JD (1957) Recent migration and evolution of the dioecious amaranths. Evolution 11:11–31

    Article  Google Scholar 

  • Sauer JD (1967) The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann MO Bot Gard 54:102–137

    Article  Google Scholar 

  • Sauer JD (1972) The dioecious amaranths: a new species name and major range extensions. Madroño 21:425–434

    Google Scholar 

  • Steckel LE (2007) The dioecious Amaranthus spp.: here to stay. Weed Technol 21:567–570

    Article  Google Scholar 

  • Tranel PJ, Trucco F (2009) 21st century weed science: a call for Amaranthus genomics. In: Stewart CN Jr (ed) Weedy and invasive plant genomics. Blackwell, Ames, IA, USA, pp 53–81

    Chapter  Google Scholar 

  • Tranel PJ, Wassom JJ, Jeschke MR, Rayburn AL (2002) Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species. Theor Appl Genet 105:674–679

    Article  PubMed  CAS  Google Scholar 

  • Transue DK, Fairbanks DJ, Robison LR, Andersen WR (1994) Species identification by RAPD analysis of grain amaranth genetic resources. Crop Sci 34:1385–1389

    Article  Google Scholar 

  • Trucco F, Jeschke MR, Rayburn AL, Tranel PJ (2005a) Amaranthus hybridus can be pollinated frequently by A. tuberculatus under field conditions. Heredity 94:64–70

    Article  PubMed  CAS  Google Scholar 

  • Trucco F, Jeschke MR, Rayburn AL, Tranel PJ (2005b) Promiscuity in weedy amaranths: high frequency of female tall waterhemp (Amaranthus tuberculatus) x smooth pigweed (A. hybridus) hybridization under field conditions. Weed Sci 53:46–54

    Article  CAS  Google Scholar 

  • Trucco F, Tatum T, Rayburn AL, Tranel PJ (2005c) Fertility, segregation at a herbicide resistance locus, and genome structure in BC1 hybrids between two important weedy Amaranthus species. Mol Ecol 14:2717–2728

    Article  PubMed  CAS  Google Scholar 

  • Trucco F, Hager AG, Tranel PJ (2006a) Acetolactate synthase mutation conferring imidazolinone-specific herbicide resistance in Amaranthus hybridus. J Plant Physiol 163:475–479

    Article  PubMed  CAS  Google Scholar 

  • Trucco F, Tatum T, Robertson KR, Rayburn AL, Tranel PJ (2006b) Morphological, reproductive, and cytogenetic characterization of Amaranthus tuberculatus × A. hybridus F1 hybrids. Weed Technol 20:14–22

    Article  Google Scholar 

  • Trucco F, Tatum T, Rayburn AL, Tranel PJ (2009) Out of the swamp: Unidirectional hybridization with weedy species may explain Amaranthus tuberculatus’ prevalence as a weed. New Phytol 184:819–827

    Article  PubMed  Google Scholar 

  • Tucker JM, Sauer JD (1958) Aberrant Amaranthus populations of the Sacramento-San Joaquin Delta, California. Madroño 14:252–261

    Google Scholar 

  • Uriyapongson J, Rayas-Duarte P (1994) Comparison of yield and properties of amaranth starches using wet and dry-wet milling processes. Cereal Chem 71:571–577

    CAS  Google Scholar 

  • Wassom JJ, Tranel PJ (2005) Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. J Hered 96:410–416

    Article  PubMed  CAS  Google Scholar 

  • Wetzel DK, Horak MJ, Skinner DZ (1999) Use of PCR-based molecular markers to identify weedy Amaranthus species. Weed Sci 47:518–523

    CAS  Google Scholar 

  • Zheleznov AV, Solonenko LP, Zheleznova NB (1997) Seed protein of the wild and cultivated Amaranthus species. Euphytica 97:177–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Tranel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trucco, F., Tranel, P.J. (2011). Amaranthus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20450-0_2

Download citation

Publish with us

Policies and ethics