Advertisement

Statistical Distribution of Generation-to-Success in GP: Application to Model Accumulated Success Probability

  • David F. Barrero
  • Bonifacio Castaño
  • María D. R-Moreno
  • David Camacho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6621)

Abstract

Many different metrics have been defined in Genetic Programming. Depending on the experiment requirements and objectives, a collection of measures are selected in order to achieve an understanding of the algorithm behaviour. One of the most common metrics is the accumulated success probability, which evaluates the probability of an algorithm to achieve a solution in a certain generation. We propose a model of accumulated success probability composed by two parts, a binomial distribution that models the total number of success, and a lognormal approximation to the generation-to-success, that models the variation of the success probability with the generation.

Keywords

Generation-to-success success probability measures models performance metrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eiben, A.E., Smith, J.E.: Working with Evolutionary Algorithms. In: Introduction to Evolutionary Computing, pp. 241–258. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Bartz-Beielstein, T.: Tuning evolutionary algorithms: overview and comprenhensive introduction. Technical Report 148/03, University at Dortmund (2003)Google Scholar
  3. 3.
    Luke, S., Panait, L.: Is the perfect the enemy of the good? In: Genetic and Evolutionary Computation Conference, pp. 820–828. Morgan Kaufmann, San Francisco (2002)Google Scholar
  4. 4.
    Koza, J.: Genetic Programming: On the programming of Computers by Means of Natural Selection. MIT Press, Cambrige (1992)zbMATHGoogle Scholar
  5. 5.
    Walker, M., Edwards, H., Messom, C.H.: Success effort and other statistics for performance comparisons in genetic programming. In: IEEE Congress on Evolutionary Computation, pp. 4631–4638. IEEE, Singapore (2007)Google Scholar
  6. 6.
    Barrero, D.F., Camacho, D., R-Moreno, M.D.: Confidence Intervals of Success Rates in Evolutionary Computation. In: GECCO 2010: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, Portland, Oregon, USA, pp. 975–976. ACM, New York (2010)Google Scholar
  7. 7.
    Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 4th edn. John Wiley & Sons, Chichester (2006)zbMATHGoogle Scholar
  8. 8.
    Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions across the sciences: Keys and clues. BioScience 51, 341–352 (2001)CrossRefGoogle Scholar
  9. 9.
    Smith, M.F.: Sampling Consideration. In: Evaluating Cooperative Extension Programs. In: Florida Cooperative Extension Service Bulletin PE-1, Institute of Food and Agricultural Sciences. University of Florida (1983)Google Scholar
  10. 10.
    Angeline, P.J.: An investigation into the sensitivity of genetic programming to the frequency of leaf selection during subtree crossover. In: GECCO 1996: Proceedings of the First Annual Conference on Genetic Programming, pp. 21–29. MIT Press, Cambridge (1996)Google Scholar
  11. 11.
    Keijzer, M., Babovic, V., Ryan, C., O’Neill, M., Cattolico, M.: Adaptive logic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 42–49. Morgan Kaufmann, San Francisco (2001)Google Scholar
  12. 12.
    Christensen, S., Oppacher, F.: An analysis of koza’s computational effort statistic for genetic programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 182–191. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Walker, M., Edwards, H., Messom, C.H.: Confidence intervals for computational effort comparisons. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 23–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Walker, M., Edwards, H., Messom, C.: The reliability of confidence intervals for computational effort comparisons. In: GECCO20’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1716–1723. ACM, New York (2007)Google Scholar
  15. 15.
    Niehaus, J., Banzhaf, W.: More on computational effort statistics for genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 164–172. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David F. Barrero
    • 1
  • Bonifacio Castaño
    • 1
  • María D. R-Moreno
    • 1
  • David Camacho
    • 1
  1. 1.Departamento de AutomáticaUniversidad de AlcaláMadridSpain

Personalised recommendations