Social Network Tools for the Assessment of the University Web Performance

  • José Luis Ortega
  • Isidro F. Aguillo


This chapter introduces Webometrics as an emerging discipline focused on the understanding and assessment of the flow of Web based academic information. It describes the principal web-based techniques and tools used to evaluate the performance of higher education websites and to explain how these information networks are created and modelled. The chapter begins with an introduction to Webometrics: its origin and evolution, its theoretical framework and its relationship with other web disciplines. The principal indicators and measures used to quantify the development of several web units (web domains, sites and pages) are described. Emphasis is placed on the properties of social-network measures in order to describe the visibility of a web site and to characterise the structure of a web space. Major developments, such as the Ranking of World universities on the Web and visualisations of web regions, are considered. Finally, there is a discussion about the implications of this discipline on the improvement of web performance and visibility of the university institutions on the Web and its impact on the development of the higher education web-based policies according to open access and e-learning initiatives.

Webometrics: a discipline devoted to the quantification of the performance of the Web


Search Engine Betweenness Centrality Closeness Centrality Strong Connect Component Incoming Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguillo, I.: Measuring the institution’s footprint in the web. Libr. Hi Tech 27(4), 540–556 (2009)CrossRefGoogle Scholar
  2. Aguillo, I.F., Granadino, B., Ortega, J.L., Prieto, J.A.: Scientific research activity and communication measured with cybermetrics indicators. Am. Soc. Info. Sci. Technol. 57(10), 1296–1302 (2006)CrossRefGoogle Scholar
  3. Aguillo, I.F., Ortega, J.L., Fernández, M.: Webometric ranking of world universities: introduction, methodology, and future developments. High. Educ. Eur. 33(2/3), 234–244 (2008)Google Scholar
  4. Almind, T.C., Ingwersen, P.: Informetric analyses on the world wide web: methodological approaches to ‘webometrics’. Documentation 53(4), 404–426 (1997)CrossRefGoogle Scholar
  5. Antelman, K.: Do open-access articles have a greater research impact? Coll. Res. Libr. 65(5), 372–382 (2004)Google Scholar
  6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  7. Bar-Ilan, J.: Which h-index? – a comparison of WoS, scopus and google scholar. Scientometrics 74(2), 257–271 (2008)CrossRefGoogle Scholar
  8. Bar-Ilan, J.: Expectations versus reality – search engine features needed for web research at mid 2005. Cybermetrics 9(1) (2005).
  9. Bar-Ilan, J., Peritz, B.C.: The lifespan of ‘Informetrics’ on the web: an eight year study (1998-2006). Scientometrics 79(1), 7–25 (2009)CrossRefGoogle Scholar
  10. Bianconi, G., Barabasi, A.L.: Competition and multiscaling in evolving networks. Europhys. Lett. 54, 43M42 (2001)Google Scholar
  11. Björneborn, L., Ingwersen, P.: Toward a basic framework for webometrics. Am. Soc. Info. Sci. Technol. 55(14), 1216–1227 (2004)CrossRefGoogle Scholar
  12. Björneborn, L.: Small-world link structures across an academic web space: a library and information science approach. Dissertation, Royal School of Library and Information Science (2004)Google Scholar
  13. Boyd, D.M., Ellison, N.B.: Social Network Sites: Definition, history, and scholarship. J. Comput.-Mediated Commun. 13(1), article 11 (2007)Google Scholar
  14. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  15. Broder, A., Kumar, R., Maghoul, F., et al.: Graph structure in the web. Comput. Netw. 33(1–6), 309–320 (2000)CrossRefGoogle Scholar
  16. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan-Kaufmann Publishers, San Francisco (2002)Google Scholar
  17. Chen, H., Shen, H., Xiong, J. et al.: Social network structure behind the mailing lists: ICT-IIIS. In: TREC 2006 Expert Finding Track. Gaithersburg, Maryland (2006)Google Scholar
  18. Cho, J., Garcia-Molina, H.: The evolution of the web and implications for an incremental crawler. In: 26th International Conference on Very Large Data Bases, San Francisco (2000)Google Scholar
  19. Cothey, V., Aguillo, I.F., Arroyo, N.: Operationalising “websites”: lexically, semantically or topologically? Cybermetrics 10(1), Paper 4 (2006)Google Scholar
  20. Fetterly, D., Manasse, M., Najork, M. et al.: A large-scale study of the evolution of web pages. In: 12th International World Wide Web Conference, ACM Press, Budapest (2003)Google Scholar
  21. Gomory, S., Hoch, R., Lee, J., et al.: Analysis and visualization of metrics for online merchandizing. In: Hochheiser, H., Shneiderman, B. (eds.) Understanding Patterns of User Visits to Web Sites: Interactive Starfield Visualization of WWW Log Data. Springer, San Diego (1999)Google Scholar
  22. Harter, S.P., Ford, C.E.: Web-based analyses of E-journal impact: approaches, problems, and issues. Am. Soc. Info. Sci. 51(13), 1159–1176 (2000)CrossRefGoogle Scholar
  23. Harter, S., Kim, H.: Electronic journals and scholarly communication: a citation and reference study. Inf. Res. 2(1), paper 9a (1996)Google Scholar
  24. Heimeriks, G., Van Den Besselaar, P.: Analyzing hyperlinks networks: the meaning of hyperlink based indicators of knowledge production. Cybermetrics 10(1,1) (2006)Google Scholar
  25. Jansen, B.J., Spink, A., Pederson, J.: A temporal comparison of AltaVista web searching. Am. Soc. Info. Sci. Technol. 56(6), 559–570 (2005)CrossRefGoogle Scholar
  26. Kleinberg, J.: Authoritative sources in a hyperlinked environment. ACM 46(5), 604–632 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  27. Koehler, W.: A longitudinal study of web pages continued: a consideration of document persistence. Inf. Res. 9(2), paper 174 (2004)Google Scholar
  28. Kretschmer, H., Aguillo, I.F.: New indicators for gender studies in web networks. Info. Process. Manage. 41(6), 1481–1494 (2005)CrossRefGoogle Scholar
  29. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, Philadelphia (2006)Google Scholar
  30. Larson, R.: Bibliometrics of the world wide web: an exploratory analysis of the intellectual structure of cyberspace. In: ASIS96, pp. 71–78 (1996)Google Scholar
  31. Lawrence, S., Giles, C.L.: Searching the world wide web. Science 280(5360), 98–100 (1998)CrossRefGoogle Scholar
  32. Lawrence, S., Pennock, D.M., Flake, G.W., et al.: Persistence of web references in scientific research. Computer 34(2), 26–31 (2001)CrossRefGoogle Scholar
  33. Lenhart, A., Madden, M.: Teens, Privacy, & Online Social Networks. Pew Internet and American Life Project Report. Washington, DC (2007)Google Scholar
  34. Ortega, J.L., Aguillo, I.F.: Visualization of the Nordic academic web: link analysis using social network tools. Info. Process. Manage. 44(4), 1624–1633 (2008a)CrossRefGoogle Scholar
  35. Ortega, J.L., Aguillo, I.F.: Linking patterns in the European union’s countries: geographical maps of the European academic web space. J. Info. Sci. 34(5), 705–714 (2008b)CrossRefGoogle Scholar
  36. Ortega, J.L., Aguillo, I.F.: Mapping world-class universities on the web. Info. Process. Manage. 45(2), 272–279 (2009)CrossRefGoogle Scholar
  37. Ortega, J.L., Aguillo, I.F.: Differences between web sessions according to the origin of their visits. J. Informetrics 4(3), 331–337 (2010)CrossRefGoogle Scholar
  38. Ortega, J.L., Aguillo, I.F., Prieto, J.A.: Longitudinal study of contents and elements in the scientific Web environment. J. Info. Sci. 32(4), 344–351 (2006)CrossRefGoogle Scholar
  39. Ortega, J.L., Aguillo, I.F., Cothey, V., Scharnhorst, A.: Maps of the academic web in the European higher education area - an exploration of visual web indicators. Scientometrics 74(2), 295–308 (2008)CrossRefGoogle Scholar
  40. Ortega, J.L., Cothey, V., Aguillo, I.F.: How old is the web? Characterizing the age and the currency of the European scientific web. Scientometrics 81(1), 295–309 (2009)CrossRefGoogle Scholar
  41. Payne, N., Thelwall, M.: Do academic link types change over time? J. Doc. 64(5), 707–720 (2008)CrossRefGoogle Scholar
  42. Pennock, D.M., Flake, G.W., Lawrence, S., et al.: Winners don’t take all: characterizing the competition for links on the web. Natl. Acad. Sci. 99(8), 5207–5211 (2002)zbMATHCrossRefGoogle Scholar
  43. Pitkow, J.: In search of reliable usage data on the WWW. In: Sixth International World Wide Web Conference, pp. 451–463. Santa Clara (1997)Google Scholar
  44. Rodriguez Gairín, J.M.: Valorando el impacto de la información en Internet AltaVista, el “Citation Index” de la Red. Revista Española de Documentación Científica 20(2), 175–181 (1997)CrossRefGoogle Scholar
  45. Rousseau, R.: Daily time series of common single word searches in AltaVista and NorthernLight. Cybermetrics 2(3), Paper 2 (1998)Google Scholar
  46. Silverstein, C., Henzinger, M., Marais, H., Moricz, M.: Analysis of a very large AltaVista query log. SRC Technical Note, 14 (1998)Google Scholar
  47. Smith, A., Thelwall, M.: Web impact factors for Australasian universities. Scientometrics 54(1–2), 363–380 (2002)CrossRefGoogle Scholar
  48. Sullivan, D.: Google dance syndrome strikes again., (2003)
  49. Teevan, J., Adar, E., Jones, R., Potts, M.: History repeats itself: repeat queries in Yahoo’s logs. In: 29th Annual International ACM SIGIR. Seattle (2006)Google Scholar
  50. Thelwall, M.: Extracting macroscopic information from web links. Am. Soc. Info. Sci. Technol. 52(13), 1157–1168 (2001)CrossRefGoogle Scholar
  51. Thelwall, M.: Evidence for the existence of geographic trends in university web site interlinking. Documentation 58(5), 563–574 (2002)CrossRefGoogle Scholar
  52. Thelwall, M.: Social networks, gender and friending: an analysis of MySpace member profiles. Am. Soc. Info. Sci. Technol. 59(8), 1321–1330 (2008)CrossRefGoogle Scholar
  53. Thelwall, M., Klitkou, A., Verbeek, A., et al.: Policy-relevant webometrics for individual scientific fields. Am. Soc. Info. Sci. Technol. 61(7), 1464–1475 (2010)CrossRefGoogle Scholar
  54. Valverde, S., Ferrer-Cancho, R., Sole, R.V.: Scale free networks from optimal design. Europhys. Lett. 60, 512–517 (2002)CrossRefGoogle Scholar
  55. Vasileiadou, E., van den Besselaar, P.: Linking shallow, linking deep. How scientific intermediaries use the web for their network of collaborators. Cybermetrics 10(1), paper 4 (2006)Google Scholar
  56. Vaughan, L.: Visualizing linguistic and cultural differences using web co-link data. Am. Soc. Info. Sci. Technol. 57(9), 1178–1193 (2006)MathSciNetCrossRefGoogle Scholar
  57. Vaughan, L., Thelwall, M.: Scholarly use of the web: what are the key inducers of links to journal web sites? Am. Soc. Info. Sci. Technol. 54(1), 29–38 (2003)CrossRefGoogle Scholar
  58. Wang, W., Zaiane, O.R.: Clustering web sessions by sequence alignment. In: 13th International Workshop on Database and Expert Systems Applications, Aix-en-Provence (2002)Google Scholar
  59. Wilkinson, D., Harries, G., Thelwall, M., et al.: Motivations for academic web site interlinking: evidence for the web as a novel source of information on informal scholarly communication. Info. Sci. 29(1), 49–56 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.R&D Unit, VICYTCSICMadridSpain
  2. 2.Cybermetrics LabCCHS-CSICMadridSpain

Personalised recommendations