Local Hydrological Information in Gravity Time Series: Application and Reduction

  • M. NaujoksEmail author
  • S. Eisner
  • C. Kroner
  • A. Weise
  • P. Krause
  • T. Jahr
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


Hydrological variations of up to some 10 nm/s2 are significant and broadband signals in temporal gravity observations. On the one hand they need to be eliminated from the data as they interfere with geodynamic signals. On the other hand they can be used to improve the understanding of hydrological process dynamics and to evaluate distributed hydrological models. Compared to satellite observations which are affected by global and regional hydrological variations continuous recordings from superconducting gravimeters (SGs) additionally may contain extractable information on local changes. To compare terrestrial data to satellite observations and to regional/global hydrological models, a local hydrological impact on the observations must be quantified and appropriately reduced first.

To investigate the local hydrological impact on gravity of the hilly and geologically heterogeneous surroundings of the SG at the Geodynamic Observatory Moxa, Germany, interdisciplinary research has been carried out. For an area of about 1.5 × 1.5 km2 a hydrological catchment model was combined with a gravimetric 3D model, including heterogeneities of the subsoil and topography in detail. A reduction of the local hydrological signal in the SG recordings was developed. About 30% of the local hydrological effect in the SG data originate from an area within a radius of 90 m around the observatory. The contribution of areas above the SG level is about 85% of the total local effect. After the local hydrological signal is separated, the SG data become suitable to be interpreted with regard to changes in continental water storage as found in GRACE satellite observations and in global hydrological models. The evaluation of the local hydrological model basing on the gravimetric modelling and the SG data highlights approaches for further enhancement of the internal hydrological process representations.


Hydrological Model Gravity Data Superconducting Gravimeter High Soil Water Content Snow Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to Manfred Fink, Norbert Kasch, Wernfrid Kühnel, Matthias Meininger, Martin Rasmussen and Stefanie Zeumann from Friedrich-Schiller-University-Jena for their help in the extensive field work. We gratefully acknowledge Hans-Jürgen Götze and Sabine Schmidt from Chrisitan-Albrechts-University Kiel for fruitful discussions and for providing the software IGMAS. The authors thank the German Research Foundation (DFG) for their funding of this research.


  1. Abe M, Takemoto S, Fukuda Y, Higashi T, Imanishi Y, Iwano S, Ogasawara S, Kobayashi Y, Takiguchi H, Dwipa S, Kusuma DS (2006) Hydrological effects on the superconducting gravimeter observation in Bandung. J Geodyn 41(1–3):288–295. doi: 10.1016/j.jog.2005.08.030 CrossRefGoogle Scholar
  2. Boy J-P, Hinderer J (2006) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn 41(1–3):227–233. doi: 10.1016/j.jog.2005.08.035 CrossRefGoogle Scholar
  3. Creutzfeldt B, Güntner A, Klügel T, Wziontek H (2008) Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany. Geophysics 73(6):WA95–WA104. doi: 10.1190/1.2992508 CrossRefGoogle Scholar
  4. Götze H-J, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics 53(8):1096–1108. doi: 10.1190/1.1442546 CrossRefGoogle Scholar
  5. Harnisch G, Harnisch M (2006) Hydrological influences in long gravimetric data series. J Geodyn 41(1–3):276–287. doi: 10.1016/j.jog.2005.08.018 CrossRefGoogle Scholar
  6. Hokkanen T, Korhonen K, Virtanen H, Laine EL (2007) Effects of the fracture water of bedrock on superconducting gravimeter data. Near Surf Geophys 5(2):133–140Google Scholar
  7. Imanishi Y, Kokubo K, Tatehata H (2006) Effect of underground water on gravity observation at Matsushiro, Japan. J Geodyn 41:221–226. doi: 10.1016/j.jog.2005.08.031 CrossRefGoogle Scholar
  8. Krause P, Naujoks M, Fink M, Kroner C (2009) The impact of soil moisture changes on gravity residuals obtained with a superconducting gravimeter. J Hydrol 373(1–2):151–163. doi: 10.1016/j.jhydrol.2009.04.019 CrossRefGoogle Scholar
  9. Kroner C (2001) Hydrological effects on gravity data of the Geodynamic Observatory Moxa. J Geod Soc Jpn 47(1):353–358Google Scholar
  10. Kroner C, Jahr T (2006) Hydrological experiments around the superconducting gravimeter at Moxa Observatory. J Geodyn 41(1–3):268–275. doi: 10.1016/j.jog.2005.08.012 CrossRefGoogle Scholar
  11. Kroner C, Jahr T, Jentzsch G (2004) Results of 44 months of observations with a superconducting gravimeter at Moxa/Germany. J Geodyn 38(3–5):263–280. doi: 10.1016/j.jog.2004.07.012 CrossRefGoogle Scholar
  12. Kroner C, Jahr T, Naujoks M, Weise A (2007) Hydrological signals in gravity – foe or friend? vol 130, IAG symposia series. Springer, Berlin, pp 504–510Google Scholar
  13. Llubes M, Florsch N, Hinderer J, Longuevergne L, Amalvict M (2004) Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some case studies. J Geodyn 38(3–5):355–374. doi: 10.1016/j.jog.2004.07.015 CrossRefGoogle Scholar
  14. Mäkinen J, Tattari S (1988) Soil moisture and groundwater: two sources of gravity variations. Bull Inf Marées Terr 63:103–110Google Scholar
  15. Meurers B, Van Camp M, Petermans T (2007) Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach station and application to Earth tide analysis. J Geod 81(11):703–712. doi:10.1007/s00190-007-0137-1CrossRefGoogle Scholar
  16. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I – a discussion of principles, J Hydrology 10(3):282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  17. Naujoks M (2008) Hydrological information in gravity: observation and modelling. PhD thesis, Institute of Geosciences, Friedrich-Schiller-University Jena., Access date 25 August 2011
  18. Naujoks M, Weise A, Kroner C, Jahr T (2008) Detection of small hydrological variations in gravity by repeated observations with relative gravimeters. J Geod 82:543–553. doi:10.1007/s00190-007- 0202-9CrossRefGoogle Scholar
  19. Naujoks M, Kroner C, Weise A, Jahr T, Krause P, Eisner S (2010) Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model. Geophys J Int. 182:233–249Google Scholar
  20. Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun H-P, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585. doi: 10.1007/s00190-005-0014-8 CrossRefGoogle Scholar
  21. Sato T, Boy J-P, Tamura Y, Matsumoto K, Asari K, Plag H-P, Francis O (2006) Gravity tide and seasonal gravity variation at Ny-Ålesund, Svalbard in Arctic. J Geodyn 41(1–3):234–241. doi: 10.1016/j.jog.2005.08.016 CrossRefGoogle Scholar
  22. Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111:B10403. doi: 10.1029/2006JB004405 CrossRefGoogle Scholar
  23. Virtanen H, Tervo M, Bilker-Koivula M (2006) Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bull Inf Marées Terr 142:11361–11368Google Scholar
  24. Weise A, Kroner C, Abe M, Ihde J, Jentzsch G, Naujoks M, Wilmes H, Wziontek H (2009) Gravity field variations from superconducting gravimeters for GRACE validation. J Geodyn 48(3–5):325–330. doi: 10.1016/j.jog.2009.09.034 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Naujoks
    • 1
    Email author
  • S. Eisner
    • 2
  • C. Kroner
    • 3
  • A. Weise
    • 1
  • P. Krause
    • 1
  • T. Jahr
    • 1
  1. 1.Institute of GeosciencesFriedrich Schiller UniversityJenaGermany
  2. 2.Center for Environmental Systems ResearchUniversity of KasselKasselGermany
  3. 3.Physikalisch-Technische Bundesanstalt BraunschweigPotsdamGermany

Personalised recommendations